Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Ôn tập chương III. Hệ hai phương trình bậc nhất hai ẩn
Bài 1. Hàm số bậc hai y=ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số bậc hai
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Bài tập ôn chương IV. Hàm số y=ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Cho hai hàm số \(y = 0,2{x^2}\) và \(y = x\)
LG a
LG a
Vẽ hai đồ thị của những hàm số này trên cùng một mặt phẳng tọa độ.
Phương pháp giải:
Lấy một số điểm thuộc đồ thị hàm số, rồi từ đó vẽ đồ thị.
Lời giải chi tiết:
Vẽ đồ thị hàm số \(y = 0,2{x^2}\)
\(x\) | \(-5\) | \(-2\) | \(0\) | \(2\) | \(5\) |
\(y = 0,2{x^2}\) | \(5\) | \(0,8\) | \(0\) | \(0,8\) | \(5\) |
Vẽ đồ thị hàm số \(y = x\).
Cho \(x=0\Rightarrow y = 0\)
Cho \(x = 5 \Rightarrow y = 5.\)
Đồ thị hàm số \(y = x\) là đường thẳng đi qua hai điểm \(O(0;0\) và \(M(5; 5)\)
Vẽ hình:
LG b
LG b
Tìm tọa độ của các giao điểm của hai đồ thị.
Phương pháp giải:
Để tìm tọa độ giao điểm của hai đồ thị, ta có phương trình hoành độ giao điểm, rồi từ đó tìm được \(x, y.\)
Lời giải chi tiết:
Phương trình hoành độ giao điểm của hai đồ thị hàm số là \(0,2x^2=x \) \(\Leftrightarrow 0,2x^2-x=0\)\(\Leftrightarrow x(0,2x-1)=0\)
\( \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
0,2x = 1
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 0 \Rightarrow y = 0\\
x = 5 \Rightarrow y = 5
\end{array} \right.\)
Vậy tọa độ giao điểm của hai đồ thị đó là \((0;0)\) và \((5;5).\)
PHẦN MỘT. LỊCH SỬ THẾ GIỚI HIỆN ĐẠI TỪ NĂM 1945 ĐẾN NAY
Tải 20 đề kiểm tra 1 tiết học kì 1 Văn 9
QUYỂN 1. CẮT MAY
Bài 15. Thương mại và du lịch
Văn thuyết minh