1. Nội dung câu hỏi
Chứng minh rằng phương trình:
a) \({x^3} + 2x - 1 = 0\) có nghiệm thuộc khoảng \(\left( { - 1;1} \right)\);
b) \(\sqrt {{x^2} + x} + {x^2} = 1\) có nghiệm thuộc khoảng \(\left( {0;1} \right)\).
2. Phương pháp giải
Sử dụng kiến thức về ứng dụng tính liên tục của hàm số vào xét sự tồn tại nghiệm của phương trình để chứng minh: Nếu hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\) và \(f\left( a \right).f\left( b \right) < 0\) thì luôn tồn tại ít nhất một điểm \(c \in \left( {a;b} \right)\) sao cho \(f\left( c \right) = 0\).
3. Lời giải chi tiết
a) Xét hàm số \(f\left( x \right) = {x^3} + 2x - 1\), f(x) liên tục trên \(\left[ { - 1;1} \right]\) và có \(f\left( { - 1} \right) = - 4,f\left( 1 \right) = 2\). Do \(f\left( { - 1} \right).f\left( 1 \right) < 0\) nên phương trình \({x^3} + 2x - 1 = 0\) có nghiệm thuộc khoảng \(\left( { - 1;1} \right)\).
b) Xét hàm số \(f\left( x \right) = \sqrt {{x^2} + x} + {x^2} - 1\), f(x) liên tục trên \(\left[ {0;1} \right]\) và có \(f\left( 0 \right) = - 1,f\left( 1 \right) = \sqrt 2 \). Do \(f\left( 0 \right).f\left( 1 \right) < 0\) nên phương trình \(f\left( x \right) = 0\) hay phương trình \(\sqrt {{x^2} + x} + {x^2} = 1\) có nghiệm thuộc khoảng \(\left( {0;1} \right)\).
Chủ đề 4: Kĩ thuật dừng bóng
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Lịch sử lớp 11
Chủ đề 5: Dẫn xuất halogen - Alcohol - Phenol
Phần một: Giáo dục kinh tế
Chủ đề 3: Kĩ thuật động tác giả và chiến thuật tấn công
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11