PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 8 TẬP 1

Bài 10 trang 99 Vở bài tập toán 8 tập 1

Đề bài

Cho tam giác \(ABC\) cân tại \(A\), các đường phân giác \(BD, CE\) (\(D ∈ AC, E ∈ AB\)). Chứng minh rằng \(BEDC\) là hình thang cân có đáy nhỏ bằng cạnh bên.

Phương pháp giải - Xem chi tiết

Sử dụng: 

- Hai tam giác bằng nhau có các cạnh tương ứng bằng nhau.

- Tam giác cân có hai cạnh bên bằng nhau hai góc đáy bằng nhau.

- Hai đường thẳng song song khi có cặp góc đồng vị bằng nhau.

- Hình thang là tứ giác có hai cạnh đối song song.

- Hình thang cân là hình thang có hai góc kề với một đáy bằng nhau.

Lời giải chi tiết

\(∆ABD\) và  \(∆ACE\) có:

\(AB = AC\) (vì tam giác \(ABC\) cân tại \(A\)) 

\(\widehat{A}\) chung

\(\widehat {{B_1}} = \widehat {{C_1}}\) (vì \(\widehat {{B_1}} = \dfrac{1}{2}\widehat B,\,\widehat {{C_1}} = \dfrac{1}{2}\widehat C\,\,\text{và}\,\,\widehat B = \widehat C\))

Do đó \( \Delta ABD = \Delta ACE{\rm{ }}\left( {g.c.g} \right) \) suy ra \( A{\rm{D}} = A{\rm{E}}\)

Tam giác \( ABC\) cân nên \(\widehat B = \widehat C = \left( {{{180}^o} - \widehat A} \right):2\)   (1)

Tam giác \(ADE\) cân nên \(\widehat {{E_1}} = \widehat {{D_1}} = \left( {{{180}^o} - \widehat A} \right):2\)     (2)

Từ (1) và (2) suy ra \(\widehat B = \widehat {{E_1}}\), hai góc này ở vị trí đồng vị nên \(ED//BC\).

Vậy \(BEDC\) là hình thang, lại có \(\widehat B = \widehat C \) nên là hình thang cân. 

Do \(ED//BC\) nên \(\widehat {{D_2}} = \widehat {{B_2}}\) (SLT), lại có \(\widehat {{B_1}} = \widehat {{B_2}}\) nên \(\widehat {{D_2}} = \widehat {{B_1}}\), suy ra \(\Delta BDE\) cân, do đó \(EB = ED\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved