Bài 1. Tứ giác
Bài 2. Hình thang
Bài 3. Hình thang cân
Bài 4. Đường trung bình của tam giác, của hình thang
Bài 5. Dựng hình bằng thước và compa. Dựng hình thang
Bài 6. Đối xứng trục
Bài 7. Hình bình hành
Bài 8. Đối xứng tâm
Bài 9. Hình chữ nhật
Bài 10. Đường thẳng song song với một đường thẳng cho trước
Bài 11. Hình thoi
Bài 12. Hình vuông
Bài tập ôn chương I. Tứ giác
Đề bài
Cho hình bình hành \(ABCD,\) \(O\) là giao điểm của hai đường chéo. Qua \(O,\) vẽ đường thẳng cắt hai cạnh \(AB,\) \(CD\) ở \(E, F.\) Qua \(O\) vẽ đường thẳng cắt hai cạnh \(AD, BC\) ở \(G, H.\) Chứng minh rằng \(EGFH\) là hình bình hành.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức:
+) Trong hình bình hành, hai đường chéo cắt nhau tại trung điểm của mỗi đường.
+) Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.
Lời giải chi tiết
Xét \(∆ OAE\) và \(∆ OCF:\)
\(OA = OC\) (tính chất hình bình hành)
\(\widehat {AOE} = \widehat {COF}\) (đối đỉnh)
\(\widehat {OAE} = \widehat {OCF}\) (so le trong)
Do đó: \(∆ OAE = ∆ OCF\;\; (g.c.g)\)
\(⇒ OE = OF \;\;(1)\)
Xét \(∆ OAG\) và \(∆ OCH:\)
\(OA = OC\) (tính chất hình bình hành)
\(\widehat {AOG} = \widehat {COH}\) (đối đỉnh)
\(\widehat {OAG} = \widehat {OCH}\) (so le trong)
Do đó: \(∆ OAG = ∆ OCH \;\;(g.c.g)\)
\(⇒ OG = OH \;\;(2)\)
Từ \((1)\) và \((2)\) suy ra: Tứ giác \(EGFH\) là hình bình hành ( vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
Chủ đề 5. Bốn mùa hòa ca
Skills Practice C
Unit 11: Science and technology
Tác giả - Tác phẩm Ngữ văn 8 kì 1
Bài 10
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8