Bài 1. Tứ giác
Bài 2. Hình thang
Bài 3. Hình thang cân
Bài 4. Đường trung bình của tam giác, của hình thang
Bài 5. Dựng hình bằng thước và compa. Dựng hình thang
Bài 6. Đối xứng trục
Bài 7. Hình bình hành
Bài 8. Đối xứng tâm
Bài 9. Hình chữ nhật
Bài 10. Đường thẳng song song với một đường thẳng cho trước
Bài 11. Hình thoi
Bài 12. Hình vuông
Bài tập ôn chương I. Tứ giác
Đề bài
Cho tam giác \(ABC,\) điểm \(M\) nằm trên cạnh \(BC.\) Gọi \(O\) là trung điểm của \(AM.\) Dựng điểm \(E\) thuộc cạnh \(AB,\) điểm \(F\) thuộc cạnh \(AC\) sao cho \(E\) đối xứng với \(F\) qua \(O\)
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức:
+) Tứ giác có các cạnh đối song song là hình bình hành.
+) Trong hình bình hành, hai đường chéo cắt nhau tại trung điểm của mỗi đường.
+) Hai điểm gọi là đối xứng với nhau qua \(O\) nếu \(O\) là trung điểm của đoạn thẳng nối hai điểm đó
Lời giải chi tiết
Cách dựng:
- Qua điểm \(M\) dựng đường thẳng song song với \(AC\) cắt \(AB\) tại \(E\)
- Qua điểm \(M\) dựng đường thẳng song song với \(AB\) cắt \(AC\) tại \(F\)
Ta có \(E, F\) là hai điểm cần dựng.
Chứng minh :
\(ME // AC\) hay \(ME // AF\)
\(MF // AB\) hay \(MF // AE\)
Nên tứ giác \(AEMF\) là hình bình hành (theo định nghĩa)
Mà \(O\) là trung điểm của \(AM\)
Suy ra: \(EF\) đi qua \(O\) và \(O\) là trung điểm của \(EF\) (tính chất hình bình hành)
\(⇒ OE = OF\)
Vậy \(E\) đối xứng với \(F\) qua tâm \(O.\)
PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 2
Bài 9. Phòng ngừa tai nạn vũ khí, cháy, nổ và các chất độc hại
Unit 10: Recycling - Tái chế
Bài 1: Tự hào về truyền thống dân tộc Việt Nam
Chủ đề 3. An toàn điện
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8