Giải Bài 11 trang 69 sách bài tập toán 7 - Cánh diều

Đề bài

Ở Hình 7 có \(\widehat {BAD} = \widehat {BCD} = 90^\circ ,\widehat {ADB} = 15^\circ \) AD song song với BC. Chứng minh AB song song với DC.

 

 

Phương pháp giải - Xem chi tiết

Chứng minh: \(\widehat {AB{\rm{D}}} = \widehat {B{\rm{D}}C}\) suy ra AB // DC (hai góc so le trong bằng nhau)

 

 

Lời giải chi tiết

Do AD // BC (giả thiết) nên \(\widehat {DBC} = \widehat {ADB} = 15^\circ \) (hai góc so le trong).

Xét ∆BCD vuông tại C ta có:

\(\widehat {CB{\rm{D}}} + \widehat {C{\rm{D}}B} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra \(\widehat {BDC} = 90^\circ  - \widehat {DBC} = 90^\circ  - 15^\circ  = 75^\circ \)

Xét ∆ABD vuông tại A ta có:

\(\widehat {AB{\rm{D}}} + \widehat {{\rm{AD}}B} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra \(\widehat {AB{\rm{D}}} = 90^\circ  - \widehat {A{\rm{D}}B} = 90^\circ  - 15^\circ  = 75^\circ \).

Do đó \(\widehat {ABD} = \widehat {BDC}\) (cùng bằng 75°)

Mà \(\widehat {AB{\rm{D}}}\) và \(\widehat {DBC}\) ở vị trí so le trong nên AB // DC.

Vậy AB // DC.

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved