1. Nội dung câu hỏi
Trong mặt phẳng tọa độ Oxy, cho đường tròn \(\left( C \right):{x^2} + {\left( {y - 1} \right)^2} = 1\). Với mỗi số thực m, gọi Q(m) là số giao điểm của đường thẳng \(d:y = m\) với đường tròn (C). Viết công thức xác định hàm số \(y = Q\left( m \right)\). Hàm số này không liên tục tại các điểm nào?
2. Phương pháp giải
Sử dụng kiến thức về định nghĩa hàm số liên tục tại một điểm để xét tính liên tục của hàm số: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng K và \({x_0} \in K\). Hàm số \(y = f\left( x \right)\) được gọi là liên tục tại điểm \({x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).
3. Lời giải chi tiết
\(Q\left( m \right) = \left\{ \begin{array}{l}0\;khi\;m < 0\;hay\;m > 2\\1\;khi\;m = 0\;hay\;m = 2\\2\;khi\;0 < m < 2\end{array} \right.\)
Vì \(\mathop {\lim }\limits_{m \to {0^ + }} Q\left( m \right) \ne \mathop {\lim }\limits_{m \to {0^ - }} Q\left( m \right)\) nên hàm số trên không liên tục tại điểm \(m = 0\).
Vì \(\mathop {\lim }\limits_{m \to {2^ + }} Q\left( m \right) \ne \mathop {\lim }\limits_{m \to {2^ - }} Q\left( m \right)\) nên hàm số trên không liên tục tại điểm \(m = 2\).
Vậy hàm số Q(m) không liên tục tại các điểm \(m = 0\), \(m = 2\).
Bài 4. Một số vấn đề về vi phạm pháp luật bảo vệ môi trường
Review 3 (Units 6-8)
Unit 1: Friendship - Tình bạn
Chuyên đề II. Làm quen với một vài yếu tố của lí thuyết đồ thị
Chuyên đề 3. Vệ sinh an toàn thực phẩm
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11