Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp - Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, quạt tròn
Ôn tập chương III. Góc với đường tròn
Đề bài
Cho đường tròn tâm \(O\), đường kính \(AB\) và \(S\) là một điểm nằm bên ngoài đường tròn. \(SA\) và \(SB\) lần lượt cắt đường tròn tại \(M\) và \(N\). Gọi \(H\) là giao điểm của \(BM\) và \(AN\). Chứng minh rằng \(SH\) vuông góc với \(AB\).
Phương pháp giải - Xem chi tiết
Sử dụng góc nội tiếp chắn nửa đường tròn là góc vuông để chỉ ra các đường cao của tam giác \(SAB.\)
Sử dụng tính chất trực tâm để suy ra \(SH \bot AB.\)
Lời giải chi tiết
Vì \(M,N\) nằm trên đường tròn tâm \(O\) nên \(\widehat {AMB} = \widehat {ANB} = 90^\circ \) ( góc nội tiếp chắn nửa đường tròn)
Suy ra \(AN \bot SB\) và \(BM \bot SA.\)
Do đó, \(AN;BM\) là hai đường cao của \(\Delta SAB\) và \(H\) là giao điểm của \(AN\) và \(BM.\)
Vậy \(SH \bot AB\) vì \(H\) là trực tâm của tam giác \(ABS.\)