PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

Bài 119 trang 94 SBT toán 8 tập 1

Đề bài

Cho tam giác \(ABC,\) đường cao \(AH.\) Gọi \(D,\, E,\, M\) theo thứ tự là trung điểm của \(AB,\, AC,\, BC.\) Chứng minh rằng tứ giác \(DEMH\) là hình thang cân.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức:

+) Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.

+) Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

+) Tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông: Đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.

Lời giải chi tiết

 

 

+ Vì \(D\) là trung điểm của \(AB\) (gt)

\(E\) là trung điểm của \(AC\) (gt)

nên \(DE\) là đường trung bình của tam giác \(ABC\)

\(⇒ DE // BC\) hay \(DE // HM\)

Suy ra: Tứ giác \(DEMH\) là hình thang

+ Vì \(D\) là trung điểm của \(AB\) (gt)

\(M\) là trung điểm của \(BC\) (gt)

nên \(DM\) là đường trung bình của \(∆ BAC\)

\(⇒ DM = \dfrac{1}{2}AC\) (tính chất đường trung bình của tam giác) (1)

Trong tam giác vuông \(AHC\) có \(\widehat {AHC} = {90^0}\).

 \(HE\) là đường trung tuyến ứng với cạnh huyền \(AC.\)

\(⇒ HE = \dfrac{1}{2}AC\) (tính chất tam giác vuông) (2)

Từ (1) và (2) suy ra: \(DM = HE\)

Vậy hình thang \(DEMH\) là hình thang cân (vì có hai đường chéo bằng nhau \(DM=EH)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved