Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Bài tập ôn chương III. Góc với đường tròn
Đề bài
Cho đường tròn tâm \(O\) đường kính \(AB.\) Các điểm \(C, D, E\) cùng thuộc một cung \(AB\) sao cho \(sđ \overparen{BC} =\dfrac{1}{6} sđ \overparen{BA};\) \( sđ \overparen{BD} = \displaystyle{1 \over 2} sđ \overparen{BA};\)\( sđ \overparen{BE} =\displaystyle{2 \over 3} sđ \overparen{BA}.\)
\(a)\) Đọc tên các góc ở tâm có số đo không lớn hơn \(180^o.\)
\(b)\) Cho biết số đo của mỗi góc ở tâm tìm được ở câu trên.
\(c)\) Cho biết tên của các cặp cung có số đo bằng nhau (nhỏ hơn \(180^o\)).
\(d)\) So sánh hai cung nhỏ \(AE\) và \(BC.\)
Phương pháp giải - Xem chi tiết
Ta sử dụng kiến thức:
+) Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó.
+) Hai cung được gọi là bằng nhau nếu chúng có số đo bằng nhau.
+) Cung nhỏ có số đo nhỏ hơn \(180^o.\)
Lời giải chi tiết
\(a)\) Các góc ở tâm có số đo không quá \(180^o\) là:
\(\widehat {AOB},\widehat {AOC},\widehat {AOD},\widehat {AOE},\widehat {BOC},\)\(\widehat {BOD},\)\(\widehat {BOE},\widehat {COD},\widehat {COE},\widehat {DOE}\)
\(b)\) Ta có: \(\widehat {AOB} = {180^0}\)
\(\Rightarrow sđ \overparen{AB} = 180^o\)
Ta có: \(sđ \overparen{BC}= \displaystyle{1 \over 6} sđ \overparen{AB}\)
\(=\displaystyle {1 \over 6}{.180^0}= 30^o\)
\( \Rightarrow \widehat {BOC} = sđ \overparen{BC}= 30^o\)
Ta có: sđ \(\overparen{BD} =\displaystyle {1 \over 2} sđ \overparen{AB}\)
\(=\displaystyle{1 \over 2}{.180^0} = {90^0}\)
\( \Rightarrow \widehat {BOD} = sđ \overparen{BD} = {90^0}\)
Ta có: \(sđ \overparen{BE} = \displaystyle{2 \over 3} sđ \overparen{BA}\)
\( = \displaystyle{2 \over 3}{.180^0} = {120^0}\)
\( \Rightarrow \widehat {BOE} = sđ \overparen{BE}= 120^o\)
\(\widehat {BOC} + \widehat {COE} = \widehat {BOE}\)
\( \Rightarrow \widehat {COE} = \widehat {BOE} - \widehat {BOC}\)
\( = {120^0} - {30^0} = {90^0}\)
\(\widehat {AOE} + \widehat {BOE} = \widehat {AOB}\)
\( \Rightarrow \widehat {AOE} = \widehat {AOB} - \widehat {BOE}\)
\( = {180^0} - {120^0} = {60^0}\)
\(\widehat {AOD} = \widehat {BOD} = \displaystyle{1 \over 2}\widehat {AOB} = {90^0}\)
\(\widehat {BOC} + \widehat {COD} = \widehat {BOD}\)
\( \Rightarrow \widehat {COD} = \widehat {BOD} - \widehat {BOC}\)
\(={90^0} - {30^0} = {60^0}\)
\(\widehat {COD} + \widehat {DOE} = \widehat {COE}\)
\( \Rightarrow \widehat {DOE} = \widehat {COE} - \widehat {COD}\)
\( = {90^0} - {60^0} = {30^0}\)
\(\widehat {COA} + \widehat {BOC} = 180^0\)
\( \Rightarrow \widehat {AOC} = 180^0 - \widehat {BOC}\)
\( = {180^0} - {30^0} = {150^0}\)
\(c)\) Các cung có số đo nhỏ hơn \(180^o\) bằng nhau.
\(\overparen{BC}=\overparen{DE}\); \(\overparen{AE}=\overparen{CD}\); \(\overparen{AD}=\overparen{BD}\); \(\overparen{AD}=\overparen{CE}\); \(\overparen{CE}=\overparen{BD}\).
\(d)\) \(sđ\overparen{AE} = \widehat {AOE} = {60^0}\)
\(sđ \overparen{BC} = \widehat {BOC} = {30^0}\)
Ta có số đo của cung \(\overparen{AE}\) gấp đôi số đo của cung \(\overparen{BC}\).