PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 8 TẬP 1

Bài 12 trang 100 Vở bài tập toán 8 tập 1

Đề bài

Chứng minh định lí "Hình thang có hai đường chéo bằng nhau là hình thang cân" qua bài toán sau: Cho hình thang \(ABCD\) \(\left( {AB//C{\rm{D}}} \right)\) có \(AC = BD.\)

Qua \(B\) kẻ đường thẳng song song với \(AC\), cắt đường thẳng \(DC\) tại \(E.\) Chứng mình rằng:

a) \(∆BDE\) là tam giác cân.

b) \(∆ACD = ∆BDC.\)

c) Hình thang \(ABCD\) là hình thang cân.

Phương pháp giải - Xem chi tiết

Áp dụng:

- Hình thang cân là hình thang có hai góc kề với một đáy bằng nhau.

- Tam giác cân có hai cạnh bên bằng nhau, hai góc đáy bằng nhau.

- Nhận xét: Nếu một hình thang có hai cạnh bên song song thì hai cạnh bên bằng nhau, hai cạnh đáy bằng nhau.

Lời giải chi tiết

a) Hình thang \(ABEC\; (AB // CE)\) có hai cạnh bên \(AC, BE\) song song nên \(  AC = BE\)  (1)

Theo giả thiết \(AC = BD\)    (2)

Từ (1) và (2) suy ra \(BE = BD\) nên \(\Delta BDE\) là tam giác cân.

b)

\(∆BDE\) cân (câu a) nên \( \widehat {{D_1}} = \widehat E\)      (3)

\(AC//BE \) nên \( \widehat {{C_1}} = \widehat E\) (2 góc đồng vị)      (4)

Từ (3) và (4) suy ra \(  \widehat {{D_1}} = \widehat {{C_1}}\)

\(∆ACD\) và \( ∆BDC\) có:

+) \(AC = BD\) (giả thiết)

+) \(\widehat {{C_1}} = \widehat {{D_1}}\) (chứng minh trên)

+) \(CD\) cạnh chung

Do đó \(∆ACD = ∆BDC\) (c.g.c)

c) \(∆ACD = ∆BDC\) (câu b) suy ra \(  \widehat {A{\rm{D}}C} = \widehat {BCD}\) (\(2\) góc tương ứng)

Hình thang \(ABCD\) có \(  \widehat {A{\rm{D}}C} = \widehat {BCD}\) nên là hình thang cân.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved