Đề bài
Thiết kế của một chiếc cổng có hình parabol với chiều cao 5 m và khoảng cách giữa hai chân cổng là 4 m.
a) Chọn trục hoành là đường thẳng nối hai chân cổng, gốc tọa độ tại một chân cổng, chân cổng còn lại có hoành độ dương, đơn vị là 1 m. Hãy viết phương trình của vòm cổng.
b) Người ta cần chuyền một thùng hàng hình hộp chữ nhật với chiều cao 3 m. Chiều rộng của thùng hàng tối đa là bao nhiêu để thùng có thể chuyển lọt qua được cổng?
Lưu ý: Đáp số làm tròn đến hàng phần trăm
Lời giải chi tiết
a) Giả sử phương trình mô tả cổng có dạng \(y = a{x^2} + bx + c\)
Từ cách đặt hệ trục ta có:
+) Gốc tọa độ tại chân cổng nên \(0 = a{.0^2} + b.0 + c \Leftrightarrow c = 0\)
+) Chân cổng còn lại có hoành độ bằng khoảng cách 2 chân cổng là 4 m nên \(0 = a{.4^2} + b.4 + c \Leftrightarrow 16a + 4b + c = 0\)
+) Đỉnh cổng có tọa độ (2;5) nên \(5 = a{.2^2} + b.2 + c \Leftrightarrow 4a + 2b + c = 5\)
Giải hệ phương trình lập được từ ba phương trình trên ta được \(a = - \frac{5}{4};b = 5;c = 0\)
Vậy phương trình vòm cổng là \(y = - \frac{5}{4}{x^2} + 5x\)
b) Yêu cầu bài toán tương đương với tìm các giá trị của x để \(y \ge 3\)
\( \Leftrightarrow - \frac{5}{4}{x^2} + 5x \ge 3 \Leftrightarrow - \frac{5}{4}{x^2} + 5x - 3 \ge 0 \Leftrightarrow \frac{{10 - 2\sqrt {10} }}{5}x \le \frac{{10 + 2\sqrt {10} }}{5}\)
Suy ra chiều rộng tối đa mà thùng hàng có thể qua cổng là \(\frac{{10 + 2\sqrt {10} }}{5} - \frac{{10 - 2\sqrt {10} }}{5} = \frac{{4\sqrt {10} }}{5} \approx 2,53\)
Vậy chiều rộng tối ra của thùng hàng gần bằng 2,53 m
Chuyên đề 1: Cơ sở hóa học
Unit 8: Ecotourism
Bài 9. Đội ngũ từng người không có súng
Chương 2. Bảng tuần hoàn các nguyên tố hóa học và định luật tuần hoàn
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Vật lí lớp 10
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10