PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 9 TẬP 1

Bài 12 trang 60 Vở bài tập toán 9 tập 1

Đề bài

a) Vẽ đồ thị của các hàm số y = x và y = 2x + 2 trên cùng một mặt phẳng tọa độ.

b) Gọi A là giao điểm của hai đồ thị nói trên, tìm tọa độ điểm A.

c) Vẽ qua điểm B(0 ; 2) một đường thẳng song song với trục Ox, cắt đường thẳng y = x tại điểm C. Tìm tọa độ của điểm C rồi tính diện tích tam giác ABC (đơn vị đo trên các trục tọa độ là xentimét).

Phương pháp giải - Xem chi tiết

a) Cách vẽ đường thẳng y = ax + b (trường hợp \(a \ne 0\) và \(b \ne 0\))

- Cho x = 0 thì y = b, được điểm P(0 ; b) thuộc trục tung Oy.

- Cho y = 0 thì \(x =  - \dfrac{b}{a}\), được điểm \(Q\left( { - \dfrac{b}{a};0} \right)\) thuộc trục hoành Ox.

- Vẽ đường thẳng đi qua hai điểm P và Q.

b) Muốn tìm giao điểm của hai đồ thị hàm số \(y = ax + b\) và \(y = a'x + b'\) :

- Giải phương trình: \(ax + b = a'x + b'\) để tìm hoành độ giao điểm.

- Tìm tung độ giao điểm bằng cách thay hoành độ giao điểm vừa tìm được vào một trong hai hàm số đã cho.

c)- Trên trục tọa độ Oxy lấy điểm \(B\left( {0;2} \right)\) rồi vẽ đường thẳng song song với Ox đi qua điểm B.

- Tìm tọa độ của điểm C.

- Tính diện tích hình tam giác theo công thức : \({S_\Delta } = \dfrac{1}{2}ah\) với \(a\) là cạnh đáy và \(h\) là chiều cao tương ứng.

Lời giải chi tiết

a) 

 

Vẽ đường thẳng đi qua hai điểm \(O\left( {0;0} \right)\) và \(M\left( {1;1} \right)\) ta được đồ thị của hàm số \(y = x\).

Vẽ đường thẳng đi qua hai điểm \(B\left( {0;2} \right)\) và \(E\left( { - 1;0} \right)\) ta được đồ thị của hàm số \(y = 2x + 2\).

b) Hoành độ giao điểm của hai đồ thị hàm số đã cho là nghiệm của phương trình:

\(2x + 2 = x \Leftrightarrow x =  - 2\)

Thay \(x =  - 2\) vào một trong hai hàm số ta tính được tung độ của A là \(y =  - 2\)

Vậy đồ thị hai hàm số đã cho cắt nhau tại \(A\left( { - 2; - 2} \right)\).

c) Qua điểm \(B\left( {0;2} \right)\) vẽ đường thẳng song song với \(Ox\), đường thẳng này có phương trình \(y = 2\), cắt đường thẳng \(y = x\) tại điểm C.

- Tọa độ của điểm C :

Với \(y = x\) mà \(y = 2\) nên \(x = 2\). Ta có \(C\left( {2;2} \right)\)

- Diện tích tam giác ABC:

Tam giác ABC có cạnh đáy là BC và chiều cao là AD.

\(BC = 2cm\) và \(AD = 4cm.\)

Vậy \({S_{ABC}} = \dfrac{1}{2}BC \cdot AD = \dfrac{1}{2} \cdot 2 \cdot 4 = 4\left( {c{m^2}} \right)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved