1. Nội dung câu hỏi
Trong mặt phẳng tọa độ Oxy, cho điểm \(M\left( {t,{t^2}} \right),t > 0\), nằm trên đường parabol \(y = {x^2}\). Đường trung trực của đoạn thẳng OM cắt trục tung tại N. Điểm N dần đến điểm nào khi M dần đến điểm O?
2. Phương pháp giải
Sử dụng kiến thức về giới hạn một phía để tính:
+ Cho \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L,\mathop {\lim }\limits_{x \to x_0^ + } g\left( x \right) = M\), khi đó: \(\mathop {\lim }\limits_{x \to x_0^ + } \left[ {f\left( x \right) + g\left( x \right)} \right] = L + M\)
+ \(\mathop {\lim }\limits_{x \to x_0^ + } c = c\) (với c là hằng số).
3. Lời giải chi tiết
Trung điểm của đoạn thẳng OM là \(I\left( {\frac{t}{2};\frac{{{t^2}}}{2}} \right)\)
Đường trung trực của OM nhận vectơ \(\overrightarrow {OM} = \left( {t,{t^2}} \right)\) làm vectơ pháp tuyến nên có phương trình d: \(t\left( {x - \frac{t}{2}} \right) + {t^2}\left( {y - \frac{{{t^2}}}{2}} \right) = 0\).
Thay \(x = 0\) vào phương trình của d, ta nhận được \(y = \frac{1}{2}\left( {1 + {t^2}} \right)\)
Suy ra \(N\left( {0;\frac{1}{2}\left( {1 + {t^2}} \right)} \right)\).
Điểm M dần đến điểm O khi t dần đến \({0^ + }\). Ta có: \(\mathop {\lim }\limits_{t \to {0^ + }} \frac{1}{2}\left( {1 + {t^2}} \right) = \frac{1}{2}\left( {1 + {0^2}} \right) = \frac{1}{2}\).
Suy ra điểm M dần đến điểm O khi điểm N dần đến điểm \(A\left( {0;\frac{1}{2}} \right)\).
Chủ đề 1: Những vấn đề chung
Chủ đề 3. Các phương pháp gia công cơ khí
Unit 6: On the go
Chương 8. Dẫn xuất halogen - ancol - phenol
Chuyên đề 3: Đọc, viết và giới thiệu về một tác giả văn học
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11