1. Nội dung câu hỏi
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}2x + 1,x \le 1\\\sqrt {{x^2} + a} ,x > 1\end{array} \right.\)
Tìm giá trị của tham số a sao cho tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\)
2. Phương pháp giải
Sử dụng kiến thức về giới hạn một phía để tính: Nếu \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L\) và \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\)
3. Lời giải chi tiết
Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \sqrt {{x^2} + a} = \sqrt {{1^2} + a} = \sqrt {1 + a} \)
\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {2x + 1} \right) = 2.1 + 1 = 3\)
Để tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) thì \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) \) \( \Rightarrow \sqrt {1 + a} = 3 \Leftrightarrow a + 1 = 9 \Leftrightarrow a = 8\).
B - ĐỊA LÍ KHU VỰC VÀ QUỐC GIA
CHƯƠNG I - ĐIỆN TÍCH ĐIỆN TRƯỜNG
Unit 11: Sources Of Energy - Các nguồn năng lượng
Tải 40 đề thi học kì 1 mới nhất có lời giải - Hóa học 11
Chuyên đề 3: Đọc, viết và giới thiệu về một tác giả văn học
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11