1. Nội dung câu hỏi
Cho hai hàm số f(x) và g(x) có \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 3\) và \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + 2g\left( x \right)} \right] = 7\). Tìm \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2f\left( x \right) + g\left( x \right)}}{{2f\left( x \right) - g\left( x \right)}}\)
2. Phương pháp giải
+ Sử dụng kiến thức về các phép toán về giới của hàm số tại vô cực để tính: Cho \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L,\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right).g\left( x \right)} \right] = L.M\)
+ Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to + \infty } c = c\) (với c là hằng số)
3. Lời giải chi tiết
Ta có: \(g\left( x \right) = \frac{1}{2}\left\{ {\left[ {f\left( x \right) + 2g\left( x \right)} \right] - f\left( x \right)} \right\}\)
Do đó, \(\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = \frac{1}{2}\left\{ {\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + 2g\left( x \right)} \right] - \mathop {\lim }\limits_{x \to + \infty } f\left( x \right)} \right\} = \frac{1}{2}\left( {7 - 3} \right) = 2\)
Suy ra: \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2f\left( x \right) + g\left( x \right)}}{{2f\left( x \right) - g\left( x \right)}} = \frac{{2\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) + \mathop {\lim }\limits_{x \to + \infty } g\left( x \right)}}{{2\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) - \mathop {\lim }\limits_{x \to + \infty } g\left( x \right)}} = \frac{{2.3 + 2}}{{2.3 - 2}} = 2\).
Bài 8: Tiết 2: Kinh tế Liên bang Nga - Tập bản đồ Địa lí 11
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Địa lí lớp 11
Chuyên đề 1. Dinh dưỡng khoáng - tăng năng suất cây trồng và nông nghiệp sạch
CHƯƠNG IV: ĐẠI CƯƠNG VỀ HÓA HỌC HỮU CƠ
Phần ba: Sinh học cơ thể
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11