1. Nội dung câu hỏi
Biết rằng \({4^x} = {25^y} = 10\). Tính giá trị biểu thức \(\frac{1}{x} + \frac{1}{y}\).
2. Phương pháp giải
Sử dụng kiến thức về phép tính lũy thừa để tính: \({a^\alpha }.{a^\beta } = {a^{\alpha + \beta }}\)
3. Lời giải chi tiết
Vì \({4^x} = 10 \Rightarrow {10^{\frac{1}{x}}} = 4,{25^y} = 10 \Rightarrow {10^{\frac{1}{y}}} = 25\)
Do đó, \({10^{\frac{1}{x} + \frac{1}{y}}} = {10^{\frac{1}{x}}}{.10^{\frac{1}{y}}} = 4.25 = 100 = {10^2} \Rightarrow \frac{1}{x} + \frac{1}{y} = 2\).
CHƯƠNG VII - MẮT. CÁC DỤNG CỤ QUANG
Unit 7: Ecological Systems
Từ vựng
Unit 10: Travel
Chuyên đề 3. Cuộc cách mạng công nghiệp lần thứ tư (4.0)
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11