Bài 1.20 trang 16 SBT giải tích 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Tìm cực trị của các hàm số sau:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

LG a

\(y = \sin 2x\)

Phương pháp giải:

Do tính tuần hoàn của hàm số nên ta chỉ xét trên đoạn \(\left[ {0;\pi } \right]\)

- Tính \(y'\), tìm nghiệm trong đoạn \(\left[ {0;\pi } \right]\).

- Tính \(y''\) và xét dấu của \(y''\) tại các điểm tìm được ở trên.

- Kết luận:

+ Tại điểm mà \(y''\) mang dấu âm thì là điểm cực đại.

+ Tại điểm mà \(y''\) mang dấu dương thì là điểm cực tiểu.

Lời giải chi tiết:

\(y = \sin 2x\)               

Hàm số có chu kỳ \(T = \pi \)

Xét hàm số \(y = \sin 2x\) trên đoạn \({\rm{[}}0;\pi {\rm{]}}\) , ta có:

\(y' = 2\cos 2x\)

\(y' = 0 \Leftrightarrow \cos 2x = 0 \) \(\Leftrightarrow 2x = \frac{\pi }{2} + k\pi  \Leftrightarrow x = \frac{\pi }{4} + \frac{{k\pi }}{2}\)

Mà \( x\in [0;\pi] \Rightarrow \left[ \matrix{
x = {\pi \over 4} \hfill \cr 
x = {{3\pi } \over 4} \hfill \cr} \right.\)

Lại có: \(y'' =  - 4\sin 2x\);

\(y''\left( {\dfrac{\pi }{4}} \right) =  - 4\sin \left( {2.\dfrac{\pi }{4}} \right) =  - 4 < 0\) nên hàm số đạt cực đại tại \(x = \dfrac{\pi }{4}\) và \({y_{CD}} = y({\pi  \over 4}) = 1\)

\(y''\left( {\dfrac{3\pi }{4}} \right) =  - 4\sin \left( {2.\dfrac{3\pi }{4}} \right) =  4 > 0\) nên hàm số đạt cực tiểu tại \(x = \dfrac{3\pi }{4}\) và \({y_{CT}} = y({{3\pi } \over 4}) =  - 1\)

Vậy trên R ta có:

\({y_{CĐ}} = y({\pi  \over 4} + k\pi ) = 1;\)

\({y_{CT}} = y({{3\pi } \over 4} + k\pi ) =  - 1,k \in Z\)

Cách khác:

y = sin2x

Hàm số có chu kỳ T = π

Xét hàm số y=sin2x trên đoạn [0;π], ta có:

y' = 2cos2x

y' = 0 \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4}\\x = \frac{{3\pi }}{4}\end{array} \right.\)

Bảng biến thiên:

Do đó trên đoạn [0;π] , hàm số đạt cực đại tại π/4 , đạt cực tiểu tại 3π/4 và yCD = y(π/4) = 1; yCT = y(3π/4) = −1

Vậy trên R ta có:

y = y(π/4 + kπ) = 1;

yCT = y(3π/4 + kπ) = −1, k∈Z.

LG b

LG b

\(y = \cos x - \sin x\)

Phương pháp giải:

Do tính tuần hoàn của hàm số nên ta chỉ xét trên đoạn \({\rm{[}} - \pi ;\pi {\rm{]}}\)

- Tính \(y'\), tìm nghiệm trong đoạn \({\rm{[}} - \pi ;\pi {\rm{]}}\).

- Tính \(y''\) và xét dấu của \(y''\) tại các điểm tìm được ở trên.

- Kết luận:

+ Tại điểm mà \(y''\) mang dấu âm thì là điểm cực đại.

+ Tại điểm mà \(y''\) mang dấu dương thì là điểm cực tiểu.

Lời giải chi tiết:

Hàm số tuần hoàn chu kỳ \(\pi\) nên ta xét trên đoạn \({\rm{[}} - \pi ;\pi {\rm{]}}\).

Ta có: \(y' =  - \sin x - \cos x = 0\) \( \Leftrightarrow \sin x =  - \cos x\) \( \Leftrightarrow \tan x =  - 1 \Leftrightarrow x =  - \dfrac{\pi }{4} + k\pi \).

Do \(x \in \left[ { - \pi ;\pi } \right]\) nên \(\left[ \begin{array}{l}x =  - \dfrac{\pi }{4}\\x = \dfrac{{3\pi }}{4}\end{array} \right.\).

Lại có \(y'' =  - \cos x + \sin x\);

+) \(y''\left( { - \dfrac{\pi }{4}} \right) =  - \cos \left( { - \dfrac{\pi }{4}} \right) + \sin \left( { - \dfrac{\pi }{4}} \right) =  - \sqrt 2  < 0\) nên \(x =  - \dfrac{\pi }{4}\) là điểm cực đại của hàm số và \({y_{CD}} = y\left( { - \dfrac{\pi }{4}} \right) = \sqrt 2 \).

+) \(y''\left( {\dfrac{{3\pi }}{4}} \right) =  - \cos \left( {\dfrac{{3\pi }}{4}} \right) + \sin \left( {\dfrac{{3\pi }}{4}} \right) = \sqrt 2  > 0\) nên \(x = \dfrac{{3\pi }}{4}\) là điểm cực tiểu của hàm số và \({y_{CT}} = y\left( {\dfrac{{3\pi }}{4}} \right) =  - \sqrt 2 \).

Vậy trên \(\mathbb{R}\) thì \({x_{CD}} =  - \dfrac{\pi }{4} + k\pi \) là điểm cực đại của hàm số và \({y_{CD}} = y\left( { - \dfrac{\pi }{4} + k\pi } \right) = \sqrt 2 \); \({x_{CT}} = \dfrac{{3\pi }}{4} + k\pi \) là điểm cực tiểu của hàm số và \({y_{CT}} = y\left( {\dfrac{{3\pi }}{4} + k\pi } \right) =  - \sqrt 2 \)

Cách khác:

Hàm số tuần hoàn chu kỳ nên ta xét trên đoạn [−π;π].

y′ = − sinx – cosx

y′ = 0 ⇔ tanx = −1 ⇔ x = −π4 + kπ, k∈Z

Lập bảng biến thiên trên đoạn [−π;π]

Hàm số đạt cực đại tại x = −π4 + k2π , đạt cực tiểu tại x = 3π4 + k2π (k∈Z) và

y = y(−π4 + k2π) = √2;

yCT = y(3π4 + k2π) = −√2 (k∈Z).

LG c

LG c

\(y = {\sin ^2}x\)

Phương pháp giải:

Do tính tuần hoàn của hàm số nên ta chỉ xét trên đoạn \(\left[ {0;\pi } \right]\)

- Tính \(y'\), tìm nghiệm trong đoạn \(\left[ {0;\pi } \right]\).

- Lập bảng biến thiên và kết luận.

Lời giải chi tiết:

Ta có: \(y = {\sin ^2}x = \frac{{1 - \cos 2x}}{2} = \frac{1}{2} - \frac{1}{2}\cos 2x\)

Do đó, hàm số đã cho tuần hoàn với chu kỳ \(\pi \).

Ta xét hàm số \(y = {1 \over 2} - {1 \over 2}\cos 2x\) trên đoạn \({\rm{[}}0;\pi {\rm{]}}\).

y′ = sin2x

\(y' = 0 \Leftrightarrow \sin 2x = 0 \Leftrightarrow x = \dfrac{{k\pi }}{2}\)

Vì \(x \in \left[ {0;\pi } \right]\) nên \(\left[ \begin{array}{l}x = 0\\x = \dfrac{\pi }{2}\\x = \pi \end{array} \right.\).

Lập bảng biến thiên trên đoạn \(\left[ {0,\pi } \right]\)

Từ đó, ta thấy hàm số đạt cực tiểu tại \(x = k.{\pi  \over 2}\) với \(k\) chẵn, đạt cực đại tại \(x = k.{\pi  \over 2}\) với \(k \) lẻ, và \({y_{CT}} = y(2m\pi ) = 0\); \({y_{CĐ}} = y((2m + 1){\pi  \over 2}) = 1(m \in Z)\).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi