Bài 1.22 trang 16 SBT giải tích 12

Đề bài

Xác định giá trị của tham số m để hàm số \(y = {x^3} - 2{x^2} + mx + 1\) đạt cực tiểu tại \(x = 1\).

                                                                                                              (Đề thi tốt nghiệp THPT năm 2011)

Phương pháp giải - Xem chi tiết

- Tính \(y'\).

- Tìm \(m\) từ điều kiện: Điểm \(x = {x_0}\) là điểm cực trị của hàm số thì \(y'\left( {{x_0}} \right) = 0\).

- Thay \(m\) vào hàm số và kiểm tra lại theo yêu cầu bài toán.

Lời giải chi tiết

TXĐ: \(D = R\)

\(y' = 3{x^2}-4x + m;\) \(y' = 0 \Leftrightarrow 3{x^2}-4x + m = 0\)

Phương trình trên có hai nghiệm phân biệt khi:

\(∆’ = 4 – 3m   > 0 ⇔ m < {4 \over 3}\)    (*)

Hàm số có cực trị tại \(x = 1\) thì:

\(y’(1) = 3 – 4 + m = 0  => m = 1\)  (thỏa mãn điều kiện (*) )

Mặt khác, vì: \(y’’ = 6x – 4 => y’’(1) = 6 – 4 = 2 > 0\) nên tại \(x = 1\) hàm số đạt cực tiểu.

Vậy với \(m = 1\), hàm số đã cho đạt cực tiểu tại \(x = 1\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved