PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

Bài 127 trang 96 SBT toán 8 tập 1

Đề bài

Cho tam giác \(ABC\) vuông tại \(A,\) điểm \(M\) thuộc cạnh \(BC.\) Gọi \(D, E\) theo thứ tự là chân các đường vuông góc kẻ từ \(M\) đến \(AB, AC.\)

\(a)\) So sánh các độ dài \(AM, DE.\)

\(b)\) Tìm vị trí của điểm \(M\) trên cạnh \(BC\) để \(DE\) có độ dài nhỏ nhất.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức:

+) Tứ giác có ba góc vuông là hình chữ nhật.

+) Trong hình chữ nhật, hai đường chéo bằng nhau.

+) Trong các đường xiên và đường vuông góc kẻ từ một điểm ở ngoài một đường thẳng đến đường thẳng đó, đường vuông góc là đường ngắn nhất.

Lời giải chi tiết

 

\(a)\) Xét tứ giác \(ADME\) ta có:

\(\widehat A = {90^0}\) (gt)

\(MD ⊥ AB\;\; (gt)\)

\( \Rightarrow \widehat {MDA} = {90^0}\)

\(ME ⊥ AC\;\; (gt)\)

\( \Rightarrow \widehat {MEA} = {90^0}\)

Suy ra: Tứ giác \(ADME\) là hình chữ nhật (vì có ba góc vuông)

\(⇒ AM = DE\) (tính chất hình chữ nhật)

\(b)\) Ta có: \(AH ⊥ BC\) nên \(AM ≥ AH\) (quan hệ đường vuông góc và đường xiên)

Dấu \(“=”\) xảy ra khi \(M\) trùng với \(H.\)

Mà \(DE = AM\) (chứng minh trên)

Vậy \(DE\) có độ dài nhỏ nhất bằng \(AH\) khi \(M\) là chân đường vuông góc kẻ từ \(A\) đến \(BC.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved