1. Nội dung câu hỏi
Tìm các giá trị của x để giá trị tương ứng của các hàm số sau bằng nhau:
a) \(y = \cos \left( {2x - \frac{\pi }{3}} \right)\) và \(y = \cos \left( {x - \frac{\pi }{4}} \right)\)
b) \(y = \sin \left( {3x - \frac{\pi }{4}} \right)\) và \(y = \sin \left( {x - \frac{\pi }{6}} \right)\)
2. Phương pháp giải
a) Sử dụng cách giải phương trình \(\sin x = m\) (1)
+ Nếu \(\left| m \right| > 1\) thì phương trình (1) vô nghiệm.
+ Nếu \(\left| m \right| \le 1\) thì tồn tại duy nhất số \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) thỏa mãn \(\sin \alpha = m\).
Khi đó, phương trình (1) tương đương với:
\(\sin x = m \Leftrightarrow \sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
- Nếu góc \(\alpha \) được cho bằng đơn vị độ thì công thức nghiệm trở thành:
\(\sin x = \sin {\alpha ^0} \Leftrightarrow \left[ \begin{array}{l}x = {\alpha ^0} + k{360^0}\\x = {180^0} - \alpha + k{360^0}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
- Nếu u, v là các biểu thức của x thì: \(\sin u = \sin v \Leftrightarrow \left[ \begin{array}{l}u = v + k2\pi \\x = \pi - v + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
b) Sử dụng cách giải phương tình \(\cos \,x = m\) (2)
+ Nếu \(\left| m \right| > 1\) thì phương trình (1) vô nghiệm.
+ Nếu \(\left| m \right| \le 1\) thì tồn tại duy nhất số \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) thỏa mãn \(\cos \,\alpha = m\).
Khi đó, phương trình (1) tương đương với:
\(\cos x = m \Leftrightarrow \cos x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
- Nếu góc \(\alpha \) được cho bằng đơn vị độ thì công thức nghiệm trở thành:
\(\cos x = \cos {\alpha ^0} \Leftrightarrow \left[ \begin{array}{l}\cos = {\alpha ^0} + k{360^0}\\\cos = - \alpha + k{360^0}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
- Nếu u, v là các biểu thức của x thì: \(\cos u = \cos v \Leftrightarrow \left[ \begin{array}{l}u = v + k2\pi \\x = - v + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
3. Lời giải chi tiết
a) Giá trị tương ứng của hai hàm số \(y = \cos \left( {2x - \frac{\pi }{3}} \right)\) và \(y = \cos \left( {x - \frac{\pi }{4}} \right)\) bằng nhau khi
\(\cos \left( {2x - \frac{\pi }{3}} \right) = \cos \left( {x - \frac{\pi }{4}} \right) \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{3} = x - \frac{\pi }{4} + k2\pi \\2x - \frac{\pi }{3} = - \left( {x - \frac{\pi }{4}} \right) + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{ - \pi }}{{12}} + k2\pi \\x = \frac{{7\pi }}{{36}} + k\frac{{2\pi }}{3}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
b) Giá trị tương ứng của hai hàm số \(y = \sin \left( {3x - \frac{\pi }{4}} \right)\) và \(y = \sin \left( {x - \frac{\pi }{6}} \right)\) bằng nhau khi
\(\sin \left( {3x - \frac{\pi }{4}} \right) = \sin \left( {x - \frac{\pi }{6}} \right) \Leftrightarrow \left[ \begin{array}{l}3x - \frac{\pi }{4} = x - \frac{\pi }{6} + k2\pi \\3x - \frac{\pi }{4} = \pi - \left( {x - \frac{\pi }{6} + } \right)k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{24}} + k\pi \\x = \frac{{17\pi }}{{48}} + k\frac{\pi }{2}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\).
Unit 13: Hobbies - Sở thích
Phần 4. Sinh học cơ thể
Chương 4: Hydrocarbon
Tải 20 đề kiểm tra 15 phút - Chương III - Hóa học 11
Phần hai: Giáo dục pháp luật
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11