1. Nội dung câu hỏi
Cho \(\sin \alpha + \cos \alpha = \frac{1}{3}\) với \( - \frac{\pi }{2} < \alpha < 0\). Tính:
a) \(A = \sin \alpha .\cos \alpha \)
b) \(B = \sin \alpha - \cos \alpha \)
c) \(C = {\sin ^3}\alpha + {\cos ^3}\alpha \)
d) \(D = {\sin ^4}\alpha + {\cos ^4}\alpha \)
2. Phương pháp giải
a) Sử dụng hằng đẳng thức \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) với \(A = \sin \alpha \), \(B = \cos \alpha \)
Sử dụng công thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\).
b) Sử dụng hằng đẳng thức \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\) với \(A = \sin \alpha \), \(B = \cos \alpha \)
Sử dụng công thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) và điều kiện \( - \frac{\pi }{2} < \alpha < 0\) để xét dấu của \(\sin \alpha \) và \(\cos \alpha \).
c) Sử dụng hằng đẳng thức \({\left( {A + B} \right)^3} = {A^3} + {B^3} + 3AB\left( {A + B} \right)\) với \(A = \sin \alpha \), \(B = \cos \alpha \).
Sử dụng công thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) và kết quả ở câu a.
d) Sử dụng công thức \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) với \(A = {\sin ^2}\alpha \), \(B = {\cos ^2}\alpha \)
Sử dụng công thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) và kết quả ở câu a.
3. Lời giải chi tiết
a) Ta có \({\left( {\sin \alpha + \cos \alpha } \right)^2} = {\sin ^2}\alpha + 2\sin \alpha .\cos \alpha + {\cos ^2}\alpha = 1 + 2\sin \alpha \cos \alpha \)
Suy ra \(A = \sin \alpha .\cos \alpha = \frac{{{{\left( {\sin \alpha + \cos \alpha } \right)}^2} - 1}}{2} = \frac{{{{\left( {\frac{1}{3}} \right)}^2} - 1}}{2} = - \frac{4}{9}\)
b) Ta có \({B^2} = {\left( {\sin \alpha - \cos \alpha } \right)^2} = {\sin ^2}\alpha - 2\sin \alpha .\cos \alpha + {\cos ^2}\alpha = 1 - 2\sin \alpha \cos \alpha \)
Theo câu a, ta có \(\sin \alpha .\cos \alpha = - \frac{4}{9}\) nên \({B^2} = 1 - 2\left( { - \frac{4}{9}} \right) = \frac{{17}}{9} \Rightarrow B = \pm \frac{{\sqrt {17} }}{3}\).
Do \( - \frac{\pi }{2} < \alpha < 0\) , ta suy ra \(\sin \alpha < 0\), \(\cos \alpha > 0\). Từ đó \(B = \sin \alpha - \cos \alpha < 0\).
Như vậy \(B = - \frac{{\sqrt {17} }}{3}\)
c) Ta có \({\left( {\sin \alpha + \cos \alpha } \right)^3} = {\sin ^3}\alpha + {\cos ^3}\alpha + 3\sin \alpha .\cos \alpha \left( {\sin \alpha + \cos \alpha } \right)\)
Theo câu a, ta có \(\sin \alpha .\cos \alpha = - \frac{4}{9}\) nên:
\(C = {\left( {\sin \alpha + \cos \alpha } \right)^3} - 3\sin \alpha .\cos \alpha \left( {\sin \alpha + \cos \alpha } \right) = {\left( {\frac{1}{3}} \right)^3} - 3.\frac{{ - 4}}{9}.\frac{1}{3} = \frac{{13}}{{27}}\).
d) Ta có \({\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)^2} = {\left( {{{\sin }^2}\alpha } \right)^2} + {\left( {{{\cos }^2}\alpha } \right)^2} + 2{\sin ^2}\alpha {\cos ^2}\alpha \)
\( = {\sin ^4}\alpha + {\cos ^4}\alpha + 2{\sin ^2}\alpha {\cos ^2}\alpha \)
Theo câu a, ta có \(\sin \alpha .\cos \alpha = - \frac{4}{9}\) nên:
\(D = {\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)^2} - 2{\left( {\sin \alpha .\cos \alpha } \right)^2} = 1 - 2{\left( { - \frac{4}{9}} \right)^2} = \frac{{49}}{{81}}\)
Unit 8: Cities of the future
Unit 1: Generation gaps and Independent life
Bài 17: Phenol
Chương 3. Sinh trưởng và phát triển ở sinh vật
Bài 6. Giới thiệu một số loại súng bộ binh, thuốc nổ, vật cản và vũ khí tự tạo
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11