PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 8 TẬP 1

Bài 13 trang 150 Vở bài tập toán 8 tập 1

Đề bài

Cho tam giác \(ABC\) và đường trung tuyến \(AM\). Chứng minh rằng:

\({S_{AMB}} = {S_{AMC}}\) 

Phương pháp giải - Xem chi tiết

- Dựng \(AH\) là đường cao của \(\Delta ABC\).

- Áp dụng công thức tính diện tích tam giác.

Diện tích tam giác bằng nửa tích cạnh đáy và chiều cao tương ứng.

Lời giải chi tiết

Kẻ \(AH\bot BC\). Theo công thức tính diện tích tam giác, ta có

\({S_{AMB}} = \dfrac{1}{2}BM.AH\)             (1)

\({S_{AMC}} = \dfrac{1}{2}CM.AH\)             (2)

Theo giả thiết \(BM = CM\)        (3)

Từ (1), (2), (3) suy ra \({S_{AMB}} = {S_{AMC}}.\)

Lưu ý. Ta có nhận xét: Nếu hai tam giác có một cạnh bằng nhau và chiều cao tương ứng bằng nhau thì có diện tích bằng nhau.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved