Giải bài 13 trang 30 SBT toán 10 - Cánh diều

Đề bài

Miền đa giác ABCD ở Hình 9 là miền nghiệm của hệ bất phương trình:

A. \(\left\{ {\begin{array}{*{20}{c}}{x + y \le 4}\\{x + y \ge  - 1}\\{x - y \le 2}\\{x - y \ge  - 2}\end{array}} \right.\)                   B. \(\left\{ {\begin{array}{*{20}{c}}{x - y \le 4}\\{x - y \ge  - 1}\\{x + y \le 2}\\{x + y \ge  - 2}\end{array}} \right.\)
C. \(\left\{ {\begin{array}{*{20}{c}}{x + y \le 1}\\{x + y \ge  - 4}\\{x - y \le 2}\\{x - y \ge  - 2}\end{array}} \right.\)                   D. \(\left\{ {\begin{array}{*{20}{c}}{x - y \le 1}\\{x - y \ge  - 4}\\{x + y \le 2}\\{x + y \ge  - 2}\end{array}} \right.\)

Phương pháp giải - Xem chi tiết

  • Bước 1: Xác định phương trình đường thẳng chia mặt phẳng thành hai phần có dạng \(ax + by = c\)
  • Bước 2: Lấy một điểm \(M\left( {{x_o};{y_o}} \right)\)thuộc miền nghiệm của bất phương trình, thay tọa độ của điểm M vào \(ax + by\) rồi so sánh với c để xác định bất phương trình cần tìm

Lời giải chi tiết

Chọn A

+) Gọi d1 là đường thẳng đi qua hai điểm A và D. Đường thẳng cắt hai trục tọa độ tại hai điểm (– 2; 0) và (0; 2) nên phương trình đường thẳng d là: \(\frac{x}{{ - 2}} + \frac{y}{2} = 1 \Leftrightarrow x - y =  - 2\)

Lấy điểm \(O\left( {0;0} \right)\) ta có \(0 - 0 = 0 >  - 2\)

Mà điểm O thuộc miền nghiệm của hệ bất phương trình nên ta có bất phương trình \(x - y \ge  - 2\)

+) Gọi \({d_2}\) là đường thẳng đi qua hai điểm A và D. Đường thẳng cắt hai trục tọa độ tại hai điểm \(\left( {4;0} \right)\) và \(\left( {0;4} \right)\)nên phương trình đường thẳng d là: \(\frac{x}{4} + \frac{y}{4} = 1 \Leftrightarrow x + y = 4\)

Lấy điểm \(O\left( {0;0} \right)\) ta có \(0 + 0 = 0 < 4\)

Mà điểm O thuộc miền nghiệm của hệ bất phương trình nên ta có bất phương trình \(x + y \le 4\)

+) Gọi d3 là đường thẳng đi qua hai điểm B và C. Đường thẳng cắt hai trục tọa độ tại hai điểm (2; 0) và (0; – 2) nên phương trình đường thẳng d là: \(\frac{x}{2} + \frac{y}{{ - 2}} = 1 \Leftrightarrow x - y = 2\)

Lấy điểm \(O\left( {0;0} \right)\) ta có \(0 - 0 = 0 < 2\)

Mà điểm O thuộc miền nghiệm của hệ bất phương trình nên ta có bất phương trình \(x - y \le 2\)

Gọi d4 là đường thẳng đi qua hai điểm D và C. Đường thẳng cắt hai trục tọa độ tại hai điểm (– 1; 0) và (0; – 1) nên phương trình đường thẳng d là: \(\frac{x}{{ - 1}} + \frac{y}{{ - 1}} = 1 \Leftrightarrow x + y =  - 1\)

Lấy điểm \(O\left( {0;0} \right)\) ta có 0 + 0 =0 > -1

Mà điểm O thuộc miền nghiệm cuẩ hệ bất phương trình nên ta có bất phương trình \(x + y \ge  - 1\)

Từ đó ta có hệ bất phương trình sau: \(\left\{ {\begin{array}{*{20}{c}}{x - y \ge  - 2}\\{x + y \le 4}\\{x - y \le 2}\\{x + y \ge  - 1}\end{array}} \right.\)

Chọn A

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved