Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Đề bài
Tìm khoảng cách giữa hai điểm trên mặt phẳng tọa độ , biết rằng :
a) A(1;1), B(5;4);
b) M(-2;2), N(3;5);
c) P(\(x_1; y_1\) ), Q(\(x_2; y_2\) )
Phương pháp giải - Xem chi tiết
+) Biểu diễn điểm \(M({x_0};{y_0})\) trên mặt phẳng tọa độ.
+) Tính khoảng cách:
Áp dụng định lí Pytago và tam giác ABC vuông tại A: \(A{B^2} + A{C^2} = B{C^2}\)
Lời giải chi tiết
a) Lấy thêm điểm \(C(5;1)\) như hình vẽ.
Ta có :
Áp dụng Pytago vào tam giác ABC ta có:
\(\eqalign{
& A{B^2} = A{C^2} + B{C^2} \cr
& = {\left( {5 - 1} \right)^2} + {\left( {4 - 1} \right)^2} \cr
& = 16 + 9 = 25 \cr} \)
\(AB = \sqrt {25} = 5\)
Cách 2: \(AB = \sqrt {{{\left( {{5} - {1}} \right)}^2} + {{\left( {{4} - {1}} \right)}^2}} \) = \(\sqrt {25} = 5\)
b) Lấy thêm điểm \(D(3;2)\) như hình vẽ.
Ta có :
Áp dụng Pytago vào tam giác MND ta có:
\(\eqalign{
& M{N^2} = M{D^2} + N{D^2} \cr
& = {\left( {3 + 2} \right)^2} + {\left( {5 -2} \right)^2} \cr
& = 25 + 9 = 34 \cr} \)
\(MN = \sqrt {34} \approx 5,83\)
Cách 2: \(CD = \sqrt {{{\left( {{3} - {-2}} \right)}^2} + {{\left( {{5} - {2}} \right)}^2}} \) = \(\sqrt {34}\approx 5,83\)
c) Ta có :
\(PQ = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \)
CHƯƠNG III. PHẦN MỀM TRÌNH CHIẾU
Bài 15. Thương mại và du lịch
Unit 2: City life
Đề kiểm tra 15 phút - Chương 2 - Sinh 9
ĐỊA LÍ DÂN CƯ