Đề bài
Cho tam giác ABC có \(BC = 50\)cm, \(\widehat B = {65^0},\widehat C = {45^0}\). Tính (làm tròn kết quả đến hàng phần mười theo đơn vị xentimet)
a) Độ dài cạnh AB, AC
b) Bán kính đường tròn ngoại tiếp tam giác ABC
Phương pháp giải - Xem chi tiết
Bước 1: Tính số đo góc A
Bước 2: Sử dụng định lí sin để tính độ dài AB, AC và bán kính R của đường tròn ngoại tiếp ∆ABC
Lời giải chi tiết
Ta có: \(\widehat A = {180^0} - (\widehat B + \widehat C) = {70^0}\)
a) Áp dụng định lí sin cho ∆ABC ta có:
\(\frac{{BC}}{{\sin A}} = \frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}} \Rightarrow \left\{ \begin{array}{l}AB = \frac{{BC.\sin C}}{{\sin A}} = \frac{{50.\sin {{45}^0}}}{{\sin {{70}^0}}} \approx 37,6cm\\AC = \frac{{BC.\sin B}}{{\sin A}} = \frac{{50.\sin {{65}^0}}}{{\sin {{70}^0}}} \approx 48,2cm\end{array} \right.\)
b) Áp dụng định lí sin cho ∆ABC ta có:
\(\frac{{BC}}{{\sin {\rm{A}}}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin A}} = \frac{{50}}{{2.\sin {{70}^0}}} \approx 26,6cm\)
Chủ đề 9: Rèn luyện bản thân theo định hướng nghề nghiệp
Chủ đề 1. Một số hiểu biết chung về quốc phòng và an ninh
Huyện đường
Unit 10: Lifestyles
Chương 6. Các cộng đồng dân tộc Việt Nam
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10