PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

Bài 133 trang 96 SBT Toán 8 tập 1

Đề bài

Chứng minh rằng trung điểm các cạnh của một hình thoi là đỉnh của một hình chữ nhật.

Phương pháp giải - Xem chi tiết

Vận dụng kiến thức : Hình bình hành có một góc vuông là hình chữ nhật.

Tính chất đường trung bình: Đường trung bình của tam giác song song với cạnh thứ ba và bằng nửa cạnh ấy.

Lời giải chi tiết

 

Giả sử hình thoi \(ABCD.\) Gọi \(E,\, F,\, G,\, H\) lần lượt là trung điểm của các cạnh \(AB,\, BC,\, CD,\, DA.\)

- Trong \(∆ ABC\) ta có:

\(E\) là trung điểm của \(AB\)

\(F\) là trung điểm của \(BC\)

nên \(EF\) là đường trung bình của tam giác \(ABC.\)

\(⇒ EF // AC\) và \(EF =\) \(\displaystyle {1 \over 2}\)\(AC\) (tính chất đường trung bình của tam giác) (1)

- Trong \(∆ ADC\) ta có:

\(H\) là trung điểm của \(AD\)

\(G\) là trung điểm của \(CD\)

nên \(HG\) là đường trung bình của \(∆ ADC\)

\(⇒ HG // AC\) và \(HG =\) \(\displaystyle {1 \over 2}\)\(AC\) ( tính chất đường trung bình của tam giác) (2)

Từ (1) và (2) suy ra: \(EF // HG\) và \(EF = HG\)

Suy ra tứ giác \(EFGH\) là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

Mặt khác: \(AC ⊥ BD\) (tính chất hình thoi)

\(EF // AC\) (chứng minh trên)

Suy ra: \(EF ⊥ BD\)

Trong \(∆ ABD\) ta có:

\(E\) là trung điểm của \(AB\)

\(H\) là trung điểm của \(AD\)

nên \(EH\) là đường trung bình của \(∆ ABD\)

\(⇒ EH // BD\) (tính chất đường trung bình của tam giác)

Suy ra: \(EH ⊥ EF\) 

Vậy hình bình hành \(EFGH\) là hình chữ nhật.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved