Bài 1.36 trang 21 SBT giải tích 12

Đề bài

Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f(x) = x + \dfrac{9}{x}\) trên đoạn \(\left[ {2;4} \right]\)

                                                                                                            (Đề thi tốt nghiệp THPT năm 2008)

Phương pháp giải - Xem chi tiết

- Tính \(y'\) và tìm nghiệm của \(y' = 0\) trên đoạn \(\left[ {2;4} \right]\).

- Tính giá trị của hàm số tại các điểm trên và hai đầu mút rồi kết luận.

Lời giải chi tiết

Ta có: \(f'(x) = 1 - \dfrac{9}{{{x^2}}} = \dfrac{{{x^2} - 9}}{{{x^2}}}\)

\(f'(x) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3 \in \left[ {2;4} \right]\\x =  - 3 \notin \left[ {2;4} \right]\end{array} \right.\)

Mà \(f\left( 2 \right) = \dfrac{{13}}{2},f\left( 3 \right) = 6,f\left( 4 \right) = \dfrac{{25}}{4}\)

Suy ra : \(\mathop {\min }\limits_{{\rm{[}}2;4]} f(x) = 6;\mathop {\max }\limits_{{\rm{[}}2;4]} f(x) = \dfrac{{13}}{2}\).

Cách khác:

TXĐ: D = R\{0}

\(f'\left( x \right) = 1 - \frac{9}{{{x^2}}} = \frac{{{x^2} - 9}}{{{x^2}}}\)

f′(x) = 0 ⇔ x = 3 hoặc x = -3

Hàm số nghịch biến trong các khoảng (-3;0), (0;3) và đồng biến trong các khoảng (−∞;3), (3;+∞)

Bảng biến thiên:

Ta có: [2;4] ⊂ (0; +∞); f(2) = 6,5; f(3) = 6; f(4) = 6,25

Suy ra

min f(x) = f(3) = 6; max f(x) = f(2) = 6,5.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved