Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Bài tập ôn chương III. Góc với đường tròn
Đề bài
Lập một phương trình bậc hai với hệ số nguyên có hai nghiệm là \(\dfrac{1}{{10 - \sqrt {72} }}\) và \(\dfrac{1}{{10 + 6\sqrt 2 }}\)
Phương pháp giải - Xem chi tiết
Nếu hai số có tổng bằng \(S\) và tích bằng \(P\) (với \(S^2\ge 4P)\) thì hai số đó là hai nghiệm của phương trình \(x^2-Sx+P=0.\)
Lời giải chi tiết
+) Tổng của hai nghiệm là \(S={x_1} + {x_2} = \dfrac{1}{{10 - \sqrt {72} }}\)\( + \dfrac{1}{{10 + 6\sqrt 2 }}\)\( = \dfrac{1}{{10 - \sqrt {72} }} + \dfrac{1}{{10 + \sqrt {72} }}\)
\( = \dfrac{{10 + \sqrt {72} + 10 - \sqrt {72} }}{{{{10}^2} - {{\left( {\sqrt {72} } \right)}^2}}}\)\( = \dfrac{{20}}{{28}}.\)
+) Tích hai nghiệm là \(P={x_1}.{x_2} = \dfrac{1}{{10 - \sqrt {72} }}.\dfrac{1}{{10 + 6\sqrt 2 }} \)\(= \dfrac{1}{{28}}.\)
Nhận thấy \({S^2} = {\left( {\dfrac{{20}}{{28}}} \right)^2} > \dfrac{4}{{28}} = 4P\)
Nên phương trình phải tìm là :\({x^2} - \dfrac{{20}}{{28}}x + \dfrac{1}{{28}} = 0\) hay \(28{x^2} - 20x + 1 = 0.\)
Bài 7: Kế thừa và phát huy truyền thống tốt đẹp của dân tộc
Đề thi vào 10 môn Văn Phú Thọ
Bài 5
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Sinh học lớp 9
Tải 20 đề kiểm tra học kì 1 Tiếng Anh 9 mới