Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
LG a
LG a
Vẽ đồ thị của các hàm số sau trên cũng một mặt phẳng tọa độ:
\(y = x + \sqrt 3\); (1)
\(y = 2x + \sqrt 3 \); (2)
Phương pháp giải:
Cách vẽ đồ thị hàm số \(y = ax + b\) \((a \ne 0)\)
+ Nếu \(b = 0\) ta có hàm số \(y = ax\) . Đồ thị của \(y = ax\) là đường thẳng đi qua gốc tọa độ \(O(0;0)\) và điểm \(A(1;a)\);
+ Nếu \(b \ne 0\) thì đồ thị \(y = ax + b\) là đường thẳng đi qua các điểm \(A(0;b)\); \(B( - \dfrac{b}{a};0)\).
Lời giải chi tiết:
*) Vẽ đồ thị của hàm số \(y = x + \sqrt 3 \)
Cho x = 0 thì \(y = \sqrt 3 \). Ta có: \(A\left( {0;\sqrt 3 } \right)\)
Cho y = 0 thì \(x + \sqrt 3 = 0 \Rightarrow x = - \sqrt 3 \). Ta có: \(B\left( { - \sqrt 3 ;0} \right)\)
*) Cách tìm điểm có tung độ bằng \(\sqrt 3 \) trên trục Oy:
- Dựng điểm M(1;1). Ta có: \(OM =\sqrt{1^2+1^2}= \sqrt 2 \)
- Dựng cung tròn tâm O bán kính OM cắt trục Ox tại điểm có hoành độ bằng \(\sqrt 2 \) .
- Dựng điểm \(N\left( {1;\sqrt 2 } \right)\). Ta có: \(ON =\sqrt {1^2+(\sqrt 2)^2}= \sqrt 3 \)
- Vẽ cung tròn tâm O bán kính ON cắt trục Oy tại A có tung độ \(\sqrt 3 \) cắt tia đối của Ox tại B có hoành độ \(-\sqrt 3 \) .
Đồ thị của hàm số \(y = x + \sqrt 3 \) là đường thẳng AB.
*) Vẽ đồ thị của hàm số \(y = 2x + \sqrt 3 \)
Cho x = 0 thì \(y = \sqrt 3 \). Ta có: \(A\left( {0;\sqrt 3 } \right)\)
Cho y = 0 thì \(2x + \sqrt 3 = 0 \Rightarrow x = - \dfrac{{\sqrt 3 }}{2}\). Ta có: \(C\left( { - \dfrac{{\sqrt 3 } }{2};0} \right)\)
Đồ thị của hàm số \(y = 2x + \sqrt 3 \) là đường thẳng AC
LG b
LG b
Gọi giao điểm của đường thẳng \(y = x + \sqrt 3 \) với các trục Oy, Ox theo thứ tự là A, B và giao điểm của đường thẳng \(y = 2x + \sqrt 3 \) với các trục Oy, Ox theo thứ tự là A, C. Tính các góc của tam giác ABC (dùng máy tính bỏ túi CASIO fx-220 hoặc CASIO fx-500A).
Phương pháp giải:
Sử dụng định nghĩa tỉ số lượng giác của góc nhọn
Sử dụng định lý tổng ba góc trong tam giác bằng \(180^0\)
Lời giải chi tiết:
Xét tam giác \(ABO\) vuông tại \(O\), có: \(tg\widehat {ABO} = \dfrac{{OA}}{{OB}} = \dfrac{{\sqrt 3 }}{{\sqrt 3 }} = 1\)\( \Rightarrow \widehat {ABO} = {45^0}\) hay \(\widehat {ABC} = {45^0}\)
Xét tam giác \(ACO\) vuông tại \(O\), có: \(tg\widehat {ACO} = \dfrac{{OA}}{{OC}} = \dfrac{{\sqrt 3 }}{{\dfrac{{\sqrt 3 }}{ 2}}} = 2\)\( \Rightarrow \widehat {ACO} = {63^0}26'\)
Ta có: \(\widehat {ACO} + \widehat {ACB} = {180^0}\) (hai góc kề bù)
Suy ra : \(\widehat {ACB} = {180^0} - \widehat {ACO}\)\( = {180^0} - {63^0}26' = {116^0}34'\)
Lại có: \(\widehat {ACB} + \widehat {ABC} + \widehat {BAC} = {180^0}\) (tổng ba góc trong tam giác \(ABC\))
Suy ra:
\(\eqalign{
& \widehat {BAC} = {180^0} - \left( {\widehat {ACB} + \widehat {ABC}} \right) \cr
& = {180^0} - \left( {{{45}^0} + {{116}^0}34'} \right) = {18^0}26' \cr} \)
Đề thi vào 10 môn Văn Tiền Giang
CHƯƠNG III. GÓC VỚI ĐƯỜNG TRÒN
Đề kiểm tra 15 phút - Chương 1 - Sinh 9
Unit 9: Natural Disasters - Thiên tai
Đề thi vào 10 môn Văn Ninh Thuận