1. Nội dung câu hỏi
Cho \(\cos x = - \frac{5}{{13}}\,\,({90^o} < x < {180^o})\). Tính các giá trị lượng giác còn lại.
2. Phương pháp giải
Áp dụng công thức \(si{n^2}x + {\cos ^2}x = 1\) để tính \(sinx\). Lưu ý điều kiện \({90^o} < x < {180^o}\) để xét dấu của \(\sin x\).
Áp dụng công thức \({\mathop{\rm tanx}\nolimits} = \frac{{sinx}}{{\cos x}}\) để tính \(\tan x\).
Áp dụng công thức \({\mathop{\rm cotx}\nolimits} = \frac{1}{{\tan x}}\) để tính \(\cot \,x\).
3. Lời giải chi tiết
Ta có:
\(\begin{array}{l}si{n^2}x + {\cos ^2}x = 1\\si{n^2}x + {\left( { - \frac{5}{{13}}} \right)^2} = 1\\si{n^2}x = 1 - \frac{{25}}{{169}}\\{\sin ^2}x = \frac{{144}}{{169}}\end{array}\)
Mà \({90^o} < x < {180^o}\)suy ra \(\sin \,x > 0\) nên \(\sin \,x = \frac{{12}}{{13}}\)
\(\tan \,x = \frac{{sin\,x}}{{\cos x}} = \frac{{\frac{{12}}{{13}}}}{{\frac{{ - 5}}{{13}}}} = - \frac{{12}}{5}\) và \(\cot \,x = \frac{1}{{\tan x}} = 1:\left( { - \frac{{12}}{5}} \right) = - \frac{5}{{12}}\).
Bài 8: Tiết 2: Kinh tế Liên bang Nga - Tập bản đồ Địa lí 11
Phần 2. Địa lí khu vực và quốc gia
Chương 1: Cân bằng hóa học
Review 4
Chủ đề 1. Trao đổi chất và chuyển hóa năng lượng ở sinh vật
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11