Bài 1.4 trang 9 SBT hình học 12.

Đề bài

Chia một khối tứ diện đều thành bốn tứ diện bằng nhau.

Phương pháp giải - Xem chi tiết

- Gọi G là trọng tâm tứ diện đều ABCD.

- Chứng minh các hình tứ diện có đỉnh là G và đáy và các mặt bên của tứ diện đã cho bằng nhau.

Lời giải chi tiết

 

 

 

Xét tứ diện đều ABCD. Gọi G là giao điểm của các đường thẳng nối đỉnh với trọng tâm của mặt đối diện.

Khi đó dễ thấy các tứ diện GABC,GBCD,GCDA,GDAB bằng nhau.

Thật vậy, các tứ diện trên đều có đáy là các tam giác đều có cạnh bằng nhau, các cạnh bên GA=GB=GC=GD.

Vậy ta đã chia được tứ diện đều thành 4 tứ diện bằng nhau.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved