Đề bài
Hãy tìm tam giác vuông có diện tích lớn nhất nếu tổng của một cạnh góc vuông và cạnh huyền bằng hằng số \(a\left( {a > 0} \right).\)
Phương pháp giải - Xem chi tiết
- Lập hàm số tính diện tích tam giác theo biến là một cạnh góc vuông.
- Xét hàm tìm GTLN và kết luận.
Lời giải chi tiết
Xét tam giác ABC vuông tại A như hình vẽ.
Gọi số đo cạnh góc vuông \(AB\) là \(x,0 < x < \dfrac{a}{2}\)
(vì \(AB < BC\) \( \Rightarrow 2AB < AB + BC = a\) \( \Rightarrow AB < \frac{a}{2}\))
Khi đó, cạnh huyền \(BC = a-x\), cạnh góc vuông còn lại là: \(AC = \sqrt {B{C^2} - A{B^2}} \) \( = \sqrt {{{(a - x)}^2} - {x^2}} \)
Hay \(AC = \sqrt {{a^2} - 2ax} \)
Diện tích tam giác \(ABC\) là: \(S(x) = \dfrac{1}{2}x\sqrt {{a^2} - 2ax} \)
\(S'(x) = \dfrac{1}{2}\sqrt {{a^2} - 2ax} - \dfrac{1}{2}\dfrac{{ax}}{{\sqrt {{a^2} - 2ax} }}\)\( = \dfrac{{a(a - 3x)}}{{2\sqrt {{a^2} - 2ax} }}\)
\(S'(x) = 0 \Leftrightarrow x = \dfrac{a}{3}\)
Bảng biến thiên:
Tam giác có diện tích lớn nhất khi \(AB = \dfrac{a}{3};BC = \dfrac{{2a}}{3}\).
Unit 4. The Mass Media
Tải 30 đề thi học kì 2 - Hóa học 12
Bài 30. Vấn đề phát triển ngành giao thông vận tải và thông tin liên lạc
Bài 41. Vấn đề sử dụng hợp lí và cải tạo tự nhiên ở Đồng bằng sông Cửu Long
ĐỀ KIỂM TRA HỌC KÌ 1 (ĐỀ THI HỌC KÌ 1) - ĐỊA LÍ 12