1. Nội dung câu hỏi
Khẳng định nào sau đây đúng?
A. Hàm số \(y = \cos x\) nghịch biến trên khoảng \(( - \pi ;0)\) và đồng biến trên khoảng \((0;\pi )\).
B. Hàm số \(y = \cos x\) đồng biến trên các khoảng \(( - \pi ;0)\) và \((0;\pi )\).
C. Hàm số \(y = \cos x\) nghịch biến trên các khoảng \(( - \pi ;0)\) và \((0;\pi )\).
D. Hàm số \(y = \cos x\) đồng biến trên khoảng \(( - \pi ;0)\) và nghịch biến trên khoảng \((0;\pi )\).
2. Phương pháp giải
Dựa vào lý thuyết hàm số \(y = \cos x\) đồng biến trên khoảng \(\left( { - \pi + k2\pi ;k2\pi } \right)\) và nghịch biến trên khoảng \(\left( {k2\pi ;\pi + k2\pi } \right)\).
Hoặc dựa vào đồ thị hàm số để khẳng định tính đồng biến nghịch biến của nó.
3. Lời giải chi tiết
Đáp án D.
Hàm số \(y = \cos x\) đồng biến trên khoảng \(( - \pi ;0)\) và nghịch biến trên khoảng \((0;\pi )\).
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Giáo dục kinh tế và pháp luật lớp 11
SBT Ngữ văn 11 - Cánh Diều tập 2
Chủ đề 5. Một số cuộc cải cách lớn trong lịch sử Việt Nam (trước năm 1858)
Chương 6. Hidrocacbon không no
Bài 4. Thực hành: Tìm hiểu những cơ hội và thách thức của toàn cầu hóa đối với các nước đang phát triển - Tập bản đồ Địa lí 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11