Vẽ đồ thị của các hàm số
LG a
\(y=\sin 2x+1\)
Phương pháp giải:
Vẽ đồ thị hàm số \(y=\sin 2x\)
- Hàm số \(y=\sin 2x\) là hàm lẻ tuần hoàn chu kỳ \(\pi\)
- Tìm các điểm đồ thị hàm số \(y=\sin 2x\) đi qua
Vẽ đồ thị hàm số \(y=\sin 2x+1\) bằng cách tịnh tiến đồ thị hàm số \(y=\sin 2x\) song song với trục tung lên phía trên một đơn vị.
Lời giải chi tiết:
Xét hàm số \(y=\sin 2x\)
Với \(x=0\), \(y=0\); \(x=\dfrac{\pi}{4}\), \(y=1\);
\(x=-\dfrac{\pi}{4}\), \(y=-1\); \(x=\dfrac{\pi}{2}\), \(y=0\);
\(x=-\dfrac{\pi}{2}\), \(y=0\)
Khi đó đồ thị hàm số \(y=\sin 2x\) đi qua các điểm là \({\left({0;0}\right)}\); \({\left({\dfrac{\pi}{4}; 1}\right)}\); \({\left({-\dfrac{\pi}{4}; -1}\right)}\); \({\left({\dfrac{\pi}{2}; 0}\right)}\);\({\left({-\dfrac{\pi}{2}; 0}\right)}\)
Đồ thị hàm số \(y=\sin 2x+1\) thu được bằng cách tịnh tiến đồ thị hàm số \(y=\sin 2x\) song song với trục tung lên phía trên một đơn vị.
LG b
\(y=\cos {\left({x-\dfrac{\pi}{6}}\right)}\)
Phương pháp giải:
Vẽ đồ thị hàm số \(y=\cos x\)
- Hàm số \(y=\cos x\) là hàm chẵn tuần hoàn chu kỳ \(2\pi\)
- Tìm các điểm đồ thị hàm số \(y=\cos x\) đi qua
Vẽ đồ thị hàm số \(y=\cos {\left({x-\dfrac{\pi}{6}}\right)}\) bằng cách tịnh tiến đồ thị hàm số \(y=\cos x\) song song với trục hoành sang bên phải một đoạn \(\dfrac{\pi}{6}\).
Lời giải chi tiết:
Xét hàm số \(y=\cos x\)
Với \(x=0\), \(y=1\); \(x=\dfrac{\pi}{2}\), \(y=0\);
\(x=-\dfrac{\pi}{2}\), \(y=0\)
Khi đó đồ thị hàm số \(y=\sin 2x\) đi qua các điểm là \({\left({0;0}\right)}\); \({\left({\dfrac{\pi}{2}; 0}\right)}\);\({\left({-\dfrac{\pi}{2}; 0}\right)}\)
Vẽ đồ thị hàm số \(y=\cos {\left({x-\dfrac{\pi}{6}}\right)}\) bằng cách tịnh tiến đồ thị hàm số \(y=\cos x\) song song với trục hoành sang phải một đoạn bằng \(\dfrac{\pi}{6}\)
Chủ đề 6: Kĩ thuật thủ môn
Bài 12: Tiết 2: Thực hành: Tìm hiểu về dân cư Ô-xtrây-li-a - Tập bản đồ Địa lí 11
Chuyên đề 2. Chiến tranh và hòa bình trong thế kỉ XX
CHƯƠNG III. SINH TRƯỞNG VÀ PHÁT TRIỂN
Bài 8. Lợi dụng địa hình, địa vật
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11