Bài 1. Đại cương về đường thằng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi và bài tập
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Đề toán tổng hợp
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Câu hỏi trắc nghiệm
Bài 1+Bài 2. Phép biến hình. Phép tịnh tiến
Bài 3. Phép đối xứng trục
Bài 4. Phép đối xứng tâm
Bài 5. Phép quay
Bài 6. Khái niệm về phép dời hình và hai hình bằng nhau
Bài 7. Phép vị tự
Bài 8. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi và bài tập
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Đề toán tổng hợp
Ôn tập chương I. Phép dời hình và phép đồng dạng trong mặt phẳng - Câu hỏi trắc nghiệm
Đề bài
Trong mặt phẳng \(Oxy\) cho hai đường thẳng \(d:x - 5y + 7 = 0\) và \(d':5x - y - 13 = 0\). Tìm phép đối xứng qua trục biến \(d\) thành \(d'\).
Phương pháp giải - Xem chi tiết
Phép đối xứng trục biến \(d\) thành \(d'\) mà \(d\) và \(d'\) không song song thì trục đối xứng là đường phân giác của góc tạo bởi \(d\) và \(d'\).
Lời giải chi tiết
Nhận xét \(d\)và \(d'\) không song song nên phép đối xứng trục biến \(d\) thành \(d'\) có trục là phân giác của góc tạo bởi \(d\) và \(d'\).
Gọi M(x;y) là điểm thuộc đường phân giác của d và d'.
Khi đó d(M,d)=d(M,d') nên:
\(\dfrac{{\left| {x - 5y + 7} \right|}}{{\sqrt {1^2+(-5)^2} }} = \dfrac{{\left| {5{\rm{x}} - y - 13} \right|}}{{\sqrt {5^2+(-1)^2} }}\)
\(\begin{array}{l}
\Leftrightarrow \frac{{\left| {x - 5y + 7} \right|}}{{\sqrt {26} }} = \frac{{\left| {5x - y - 13} \right|}}{{\sqrt {26} }}\\
\Leftrightarrow \left| {x - 5y + 7} \right| = \left| {5x - y - 13} \right|\\
\Leftrightarrow \left[ \begin{array}{l}
x - 5y + 7 = 5x - y - 13\\
x - 5y + 7 = - \left( {5x - y - 13} \right)
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
- 4x - 4y + 20 = 0\\
6x - 6y - 6 = 0
\end{array} \right.
\end{array}\)
\( \Leftrightarrow \left[ \begin{array}{l}x + y - 5 = 0\\x - y - 1 = 0\end{array} \right.\)
Vậy có hai đường thẳng cần tìm là x + y - 5 = 0 và x - y - 1 = 0.
Unit 0: Introduction
Unit 8: Becoming independent
Unit 0: Introduction
Bài 8. Lợi dụng địa hình, địa vật
Phần ba. Sinh học cơ thể
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11