PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 9 TẬP 2

Bài 15 trang 96 Vở bài tập toán 9 tập 2

Đề bài

Cho đường tròn \((O)\) và một điểm \(M\) cố định không nằm trên đường tròn. Qua \(M\) kẻ hai đường thẳng. Đường thẳng thứ nhất cắt \((O)\) tại \(A\) và \(B\). Đường thẳng thứ hai cắt \((O)\) tại \(C\) và \(D\). Chứng minh \(MA.MB = MC.MD\)

Phương pháp giải - Xem chi tiết

Sử dụng hai góc nội tiếp cùng chắn một cung thì bằng nhau

Chứng minh các tam giác đồng dạng từ đó suy ra tỉ lệ cạnh và hệ thức cần chứng minh.

Lời giải chi tiết

a) \(M\)  nằm bên trong đường tròn

Xét \(\Delta MAC\) và \(\Delta MDB\), ta có:

\(\widehat {{AMC}} = \widehat {{BMD}}\) (hai góc đối đỉnh)

\(\widehat {CAB} = \widehat {ADB}\) vì cùng chắn cung \(AD\)

\( \Rightarrow \Delta MAC \backsim \Delta MDB\)

Theo tính chất hai tam giác đồng dạng ta có :

 \(\dfrac{{MA}}{{MD}} = \dfrac{{MC}}{{MB}}\)\( \Rightarrow MA.MB = MC.MD\)

b) \(M\) nằm bên ngoài đường tròn

Xét đường tròn \(\left( O \right)\) có \(\widehat {ADC} = \widehat {ABC}\)  (hai góc nội tếp cùng chắn cung \(AC\))

Xét \(\Delta MAD\) và \(\Delta MCB\), ta có:

Góc \(M\) là góc chung

 \(\widehat B = \widehat D\) vì cùng chắn cung \(AC\)

\( \Rightarrow \Delta MCB \backsim \Delta MAD\)

Theo tính chất của hai tam giác đồng dạng suy ra :

 \(\dfrac{{MC}}{{MA}} = \dfrac{{MB}}{{MD}}\)\( \Rightarrow MC.MD = MA.MB\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved