PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

Bài 151 trang 98 SBT Toán 8 tập 1

Đề bài

Cho hình vuông \(ABCD.\) Gọi \(E\) là một điểm nằm giữa \(C\) và \(D.\) Tia phân giác của góc \(DAE\) cắt \(CD\) ở \(F.\) Kẻ \(FH ⊥ AE\) \((H ∈ AE),\) \(FH\) cắt \(BC\) ở \(G.\)

Tính số đo góc \(FAG.\)

Phương pháp giải - Xem chi tiết

Vận dụng kiến thức về các trường hợp bằng nhau của tam giác vuông và tính chất của hình vuông để tìm lời giải cho bài toán.

Lời giải chi tiết

 

Xét hai tam giác vuông \(DAF\) và \(HAF:\)

\(\widehat {ADF} = \widehat {AHF} = {90^0}\)

\({\widehat A_1} = {\widehat A_2}\) (vì AF là tia phân giác của góc DAH)

\(AF\) cạnh huyền chung

Do đó: \(∆ DAF = ∆ HAF\) (cạnh huyền, góc nhọn)

\(⇒ DA = HA\)

\(DA = AB\) (do ABCD là hình vuông)

Suy ra: \(HA = AB\)

Xét hai tam giác vuông \(HAG\) và \(BAG:\)

\(\widehat {AHG} = \widehat {ABG} = {90^0}\)

\(HA = BA\) (chứng minh trên)

\(AG\) cạnh huyền chung

Do đó: \(∆ HAG = ∆ BAG\) (cạnh huyền, cạnh góc vuông)

\( \Rightarrow {\widehat A_3} = {\widehat A_4}\) nên \(AG\) là tia phân giác của \(\widehat {EAB}\)

\(\widehat {FAG} = {\widehat A_2} + {\widehat A_3}\)\( =\displaystyle {1 \over 2}\left( {\widehat {DAE} + \widehat {EAB}} \right) = {1 \over 2}{.90^0} = {45^0}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved