Câu hỏi 1.56 - Mục Bài tập trang 28

1. Nội dung câu hỏi

Chứng minh các biểu thức sau không phụ thuộc vào x

a) \(A = \sin \left( {\frac{\pi }{4} + x} \right) - \cos \left( {\frac{\pi }{4} - x} \right)\);           

b) \(B = \cos \left( {\frac{\pi }{6} - x} \right) - \sin \left( {\frac{\pi }{3} + x} \right)\);

c) \(C = {\sin ^2}x + \cos \left( {\frac{\pi }{3} - x} \right)\cos \left( {\frac{\pi }{3} + x} \right)\);               

d) \(D = \frac{{1 - \cos 2x + \sin 2x}}{{1 + \cos 2x + \sin 2x}}.\cot x\).


2. Phương pháp giải

Áp dụng công thức góc liên quan, công thức biến tích thành tổng, công thức góc nhân đôi, công thức lượng giác cơ bản để biến đổi linh hoạt.

\(\cos \left( {\frac{\pi }{2} - x} \right) = \sin x\)

\(\cos a\cos b = \frac{1}{2}\left( {\cos \left( {a + b} \right) + \cos \left( {a - b} \right)} \right)\)

\(\cos 2a = 1 - 2{\sin ^2}a = 2{\cos ^2}a - 1\)

\(\sin 2a = 2\sin a\cos a\)

\(\tan a = \frac{{\sin a}}{{\cos a}}\,;\,\,\cot a = \frac{{\cos a}}{{\sin a}}\); \(\tan a.\cot a = 1\).

 

3. Lời giải chi tiết 

a) Ta có

\(\begin{array}{l}A = \sin \left( {\frac{\pi }{4} + x} \right) - \cos \left( {\frac{\pi }{4} - x} \right) = \cos \left( {\frac{\pi }{2} - \left( {\frac{\pi }{4} + x} \right)} \right) - \cos \left( {\frac{\pi }{4} - x} \right)\\\,\,\,\,\,\, = \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{\pi }{4} - x} \right) = 0\end{array}\)

b) Ta có

\(\begin{array}{l}B = \cos \left( {\frac{\pi }{6} - x} \right) - \sin \left( {\frac{\pi }{3} + x} \right) = \cos \left( {\frac{\pi }{6} - x} \right) - \cos \left( {\frac{\pi }{2} - \left( {\frac{\pi }{3} + x} \right)} \right)\\\,\,\,\,\, = \cos \left( {\frac{\pi }{6} - x} \right) - \cos \left( {\frac{\pi }{6} - x} \right) = 0\end{array}\)

c) Ta có

\(\begin{array}{l}C = {\sin ^2}x + \cos \left( {\frac{\pi }{3} - x} \right)\cos \left( {\frac{\pi }{3} + x} \right)\\\,\,\,\,\, = {\sin ^2}x + \frac{1}{2}\left[ {\cos \left( {\frac{\pi }{3} - x + \frac{\pi }{3} + x} \right) + \cos \left( {\frac{\pi }{3} - x - \left( {\frac{\pi }{3} + x} \right)} \right)} \right]\\\,\,\,\,\, = {\sin ^2}x + \frac{1}{2}\left[ {\cos \frac{{2\pi }}{3} + \cos ( - 2x)} \right] = {\sin ^2}x + \frac{1}{2}\left( { - \frac{1}{2} + \cos 2x} \right)\\\,\,\,\,\, = {\sin ^2}x - \frac{1}{4} + \frac{1}{2}\left( {1 - 2{{\sin }^2}x} \right) = \frac{1}{4}\end{array}\)

d) Ta có

\(\begin{array}{l}D = \frac{{1 - \cos 2x + \sin 2x}}{{1 + \cos 2x + \sin 2x}}.\cot x\\\,\,\,\,\,\, = \frac{{1 - (1 - 2{{\sin }^2}x) + 2\sin x\cos x}}{{1 + 2{{\cos }^2}x - 1 + 2\sin x\cos x}}.\cot x\\\,\,\,\,\,\, = \frac{{2{{\sin }^2}x + 2\sin x\cos x}}{{2{{\cos }^2}x + 2\sin x\cos x}}.\cot x\\\,\,\,\,\,\, = \frac{{2\sin x(\sin x + \cos x)}}{{2\cos x(\cos x + \sin x)}}.\cot x = \frac{{\sin x}}{{\cos x}}.\cot x = \tan x.\cot x = 1\end{array}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey

Chatbot GPT

timi-livechat
Đặt câu hỏi