PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 9 TẬP 1

Bài 16 trang 121 Vở bài tập toán 9 tập 1

Đề bài

Cho tam giác ABC vuông tại A, AB = 15cm, BC = 39cm. Tia phân giác của góc B cắt AC ở D. Vẽ đường tròn (D ; DA).

a) Chứng minh rằng BC là tiếp tuyến của đường tròn đó

b) Tính bán kính của đường tròn đó.

Phương pháp giải - Xem chi tiết

a) Kẻ \(DE \bot BC\) chứng minh \( DE = R.\)

b) Dùng định lí Py-ta-go tìm độ dài cạnh \(AC.\)

Áp dụng tính chất đường phân giác của một góc và tỉ lệ thức để tìm độ dài cạnh \(DA.\)

Lời giải chi tiết

a) Kẻ \(DE \bot BC.\)

Điểm D thuộc tia phân giác của góc \(\widehat {ABC}\) nên \(DE = DA.\)

Khoảng cách từ \(D\) đến \(BC\) bằng bán kính đường tròn \(\left( {D;DA} \right)\) nên \(BC\) là tiếp tuyến của \(\left( {D;DA} \right)\)

b) Tính \(AC:\) Áp dụng định lí Py-ta-go ta có

\(A{C^2} = B{C^2} - A{B^2} = {39^2} - {15^2} = 1296\) nên \(AC = 36cm.\)

Tính \(DA:\) Áp dụng tính chất đường phân giác của tam giác \(ABC,\) ta có

\(\dfrac{{DA}}{{DC}} = \dfrac{{AB}}{{BC}} = \dfrac{{15}}{{39}} = \dfrac{5}{{13}}.\)

Do đó \(\dfrac{{DA}}{5} = \dfrac{{DC}}{{13}} = \dfrac{{DA + DC}}{{5 + 13}} = \dfrac{{AC}}{{18}} = 2.\)

Suy ra \(DA = 2.5 = 10\left( {cm} \right).\)

Vậy bán kính của đường tròn \(\left( D \right)\) bằng \(10cm.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved