Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Cho hàm số \(y = \left( {a - 1} \right)x + a\).
LG a
LG a
Xác định giá trị của \(a\) để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng \(2.\)
Phương pháp giải:
Điểm \(M({x_0};{y_0})\) thuộc đồ thị \(y = ax + b\) khi \({y_0} = a{x_0} + b\)
Lời giải chi tiết:
Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng \(y = 2,\) suy ra điểm đó có hoành độ \(x=0\).
Thay \(x=0\), \(y=2\) vào hàm số \(y = \left( {a - 1} \right)x + a\,\,\,\,\left( {a \ne 1} \right)\) ta được:
\(2 = \left( {a - 1} \right).0+ a \Rightarrow a=2\) (thỏa mãn)
Vậy \(a=2\).
Cách khác:
Hàm số \(y = \left( {a - 1} \right)x + a\,\,\,\,\left( {a \ne 1} \right)\) là hàm số bậc nhất có đồ thị hàm số cắt trục tung tại điểm có tung độ bằng \(y = 2\) nên \(a = 2.\)
LG b
LG b
Xác định giá trị của \(a\) để đồ thị hàm số cắt trục tung tại điểm có hoành độ bằng \(-3.\)
Phương pháp giải:
Điểm \(M({x_0};{y_0})\) thuộc đồ thị \(y = ax + b\) khi \({y_0} = a{x_0} + b\)
Lời giải chi tiết:
Hàm số \(y = \left( {a - 1} \right)x + a\,\,\,\,\left( {a \ne 1} \right)\) là hàm số bậc nhất có đồ thị hàm số cắt trục hoành tại điểm có hoành độ \(x = -3\) nên tung độ giao điểm này bằng 0.
Ta có:
\(\eqalign{
& 0 = \left( {a - 1} \right)\left( { - 3} \right) + a \cr
& \Leftrightarrow - 3a + 3 + a = 0 \cr
& \Leftrightarrow - 2a = - 3 \Leftrightarrow a = 1,5 \cr} \)
LG c
LG c
Vẽ đồ thị của hai hàm số ứng với giá trị của a tìm được ở các câu a) , b) trên cùng hệ trục tọa độ \(Oxy\) và tìm tọa độ giao điểm của hai đường thẳng vừa vẽ được.
Phương pháp giải:
Cách vẽ đồ thị hàm số \(y = ax + b\) \((a \ne 0)\)
+ Nếu \(b = 0\) ta có hàm số \(y = ax\) . Đồ thị của \(y = ax\) là đường thẳng đi qua gốc tọa độ \(O(0;0)\) và điểm \(A(1;a)\);
+ Nếu \(b \ne 0\) thì đồ thị \(y = ax + b\) là đường thẳng đi qua các điểm \(A(0;b)\); \(B( - \dfrac{b}{a};0)\).
Lời giải chi tiết:
Khi \(a = 2\) thì ta có hàm số: \(y = x + 2\)
Khi \(a = 1,5\) thì ta có hàm số: \(y = 0,5x + 1,5\)
* Vẽ đồ thị của hàm số \(y = x + 2\)
Cho \(x = 0\) thì \(y = 2.\) Ta có: \(A(0;2)\)
Cho \(y = 0\) thì \(x = -2.\) Ta có: \(B(-2;0)\)
Đường thẳng AB là đồ thị hàm số \(y = x + 2\).
* Vẽ đồ thị của hàm số \(y = 0,5x + 1,5\)
Cho \(x = 0\) thì \(y = 1,5.\) Ta có: \(C(0;1,5)\)
Cho \(y = 0\) thì \(x = -3.\) Ta có : \(D(-3;0)\)
Đường thẳng \(CD\) là đồ thị hàm số \(y = 0,5x + 1,5\)
* Tọa độ giao điểm của hai đường thẳng .
Gọi \(M(x_1;y_1)\) là giao điểm của hai đường thẳng \(y = x + 2\) và \(y = 0,5x + 1,5\).
Ta có:
\(M(x_1;y_1)\) thuộc đường thẳng \(y = x + 2\) nên \({y_1} = {x_1} + 2\)
\(M(x_1;y_1)\) thuộc đường thẳng \(y = 0,5x + 1,5\) nên \({y_1} = 0,5{x_1} + 1,5\)
Suy ra:
\(\eqalign{
& {x_1} + 2 = 0,5{x_1} + 1,5 \cr
& \Leftrightarrow 0,5{x_1} = - 0,5 \cr
& \Leftrightarrow {x_1} = - 1 \cr} \)
\({x_1} = - 1 \Rightarrow {y_1} = - 1 + 2 = 1\)
Vậy tọa độ giao điểm của hai đường thẳng là \(M(-1;1). \)
Đề kiểm tra giữa kì 2
Unit 3: Teen stress and pressure
Bài 20. Vùng đồng bằng sông Hồng
Bài 4: Bảo vệ hòa bình
Đề thi vào 10 môn Văn Kon Tum