PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

Bài 162 trang 100 SBT Toán 8 tập 1

Đề bài

Cho hình bình hành ABCD có AB = 2AD. Gọi E và F theo thứ tự là trung điểm của AB và CD.

a. Các tứ giác AEFD, AECF là hình gì ? Vì sao ?

b. Gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật.

c. Hình bình hành ABCD nói trên có thêm điều kiện gì thì EMFN là hình vuông ?

Phương pháp giải - Xem chi tiết

Vận dụng kiến thức về dấu hiệu nhận biết hình bình hành, hình thoi và hình chữ nhật.

Sử dụng tính chất các cạnh, góc và đường chéo của các hình đó.

Lời giải chi tiết

a. Xét tứ giác AEFD:

AB // CD (gt) hay AE // FD

AE = \(\displaystyle {1 \over 2}\)AB (gt)

FD = \(\displaystyle {1 \over 2}\)CD (gt)

Mà AB=CD (do ABCD là hình bình hành)

Suy ra: AE = FD

Tứ giác AEFD là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

Lại có AD = AE = \(\displaystyle {1 \over 2}\)AB

Vậy tứ giác AEFD là hình thoi.

Xét tứ giác AECF : AE // CF (gt)

AE = \(\displaystyle {1 \over 2}\)AB (gt)

CF = \(\displaystyle {1 \over 2}\)CD (gt)

Mà AB=CD (do ABCD là hình bình hành)

Suy ra: AE = CF

Tứ giác AECF là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

b. Tứ giác AEFD là hình thoi

⇒ AF ⊥ ED ⇒ \(\widehat {EMF} = {90^0}\)

Mà AF // CE (vì tứ giác AECF là hình bình hành)

Suy ra: CE ⊥ ED \( \Rightarrow \widehat {MEN} = {90^0}\)

Xét tứ giác EBFD ta có: EB = FD (vì cùng bằng AE) và EB // FD (vì AB // CD)

Xét tứ giác EBFD là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

⇒ DE // BF

Suy ra: \(BF ⊥ AF  ⇒ \widehat {MFN} = 90°\)

Vậy tứ giác EMFN là hình chữ nhật (vì có 3 góc vuông)

c. 

Ta có: Hình chữ nhật EMFN là hình thoi ⇒ ME = MF

ME = \(\dfrac{1}2\)DE (tính chất hình thoi AEFD)

MF = \(\dfrac{1}2\)AF (tính chất hình thoi AEFD)

Suy ra: DE = AF

⇒ Tứ giác AEFD là hình vuông (vì hình thoi có 2 đường chéo bằng nhau)

⇒ \(\widehat A = {90^0}\)  ⇒ Hình bình hành ABCD là hình chữ nhật

Ngược lại: ABCD là hình chữ nhật ⇒\(\widehat A = {90^0}\)

Hình thoi AEFD có \(\widehat A = {90^0}\) nên AEFD là hình vuông

⇒ AF = DE ⇒ ME = MF (tính chất hình vuông)

Hình chữ nhật EMFN là hình vuông (vì có hai cạnh kề bằng nhau)

Vậy hình chữ nhật EMFN là hình vuông nếu ABCD là hình chữ nhật có AB = 2AD.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved