Đề bài
a) Biểu diễn miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y \le 5}\\{3x + 2y \le 12}\\{x \ge 1}\\{y \ge 0}\end{array}} \right.\left( {III} \right)\)
b) Tìm x, y là nghiệm của hệ bất phương trình (III) sao cho \(F = 3x + 7y\) đạt giá trị lớn nhất, nhỏ nhất.
Phương pháp giải - Xem chi tiết
a)
b)
- Biểu diễn miền nghiệm của hệ bất phương trình trên hệ tọa độ
\(F\left( {x;y} \right)\) đạt max hoặc min tại một trong các đỉnh nên ta chỉ cần tính giá trị của \(F\left( {x;y} \right)\) tại các đỉnh đó
Lời giải chi tiết
a) Ta vẽ bốn đường thẳng:
d1: x + y = 5 là đường thẳng đi qua hai điểm có tọa độ (0; 5) và (5; 0);
d2: 3x + 2y = 12 là đường thẳng đi qua hai điểm có tọa độ (4; 0) và (0; 6);
d3: x = 1 là đường thẳng song song với trục tung và đi qua điểm (1; 0);
d4: y = 0 là trục hoành.
Ta xác định từng miền nghiệm của từng bất phương trình trong hệ, gạch đi các phần không thuộc miền nghiệm của mỗi bất phương trình.
Miền nghiệm của hệ bất phương trình là miền trong tứ giác ABCD với A(1; 0), B(1; 4), C(2; 3) và D(4; 0) như hình vẽ sau:
b) Ta có biểu thức F = 3x + 7y đạt giá trị lớn nhất, giá trị nhỏ nhất tại một trong các đỉnh của tứ giác ABCD.
Tại A(1; 0) với x = 1 và y = 0 thì F = 3.1 + 7.0 = 3;
Tại B(1; 4) với x = 1 và y = 4 thì F = 3.1 + 7.4 = 31;
Tại C(2; 3) với x = 2 và y = 3 thì F = 3.2 + 7.3 = 27;
Tại D(4; 0) với x = 4 và y = 0 thì F = 3.4 + 7.0 = 12.
Vậy giá trị lớn nhất của F là 31 tại x = 1 và y = 4, giá trị nhỏ nhất của F là 3 tại x = 1 và y = 0
Xuân về
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Hóa học lớp 10
Chủ đề 8: Hiến pháp nước Cộng hòa xã hội chủ nghĩa Việt Nam
Chủ đề 4. Động lượng
MỞ ĐẦU. GIỚI THIỆU MỤC ĐÍCH HỌC TẬP MÔN VẬT LÍ
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10