Chứng minh các bất đẳng thức sau:
LG câu a
a) \(\tan x > \sin x\), \(0 < x < \dfrac{\pi }{2}\)
Phương pháp giải:
Xét hàm \(f\left( x \right) = \tan x - \sin x\) và chứng minh nó đồng biến trên \(\left( {0;\dfrac{\pi }{2}} \right)\).
Từ đó suy ra điều phải chứng minh.
Giải chi tiết:
Xét hàm \(f\left( x \right) = \tan x - \sin x\) trên khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\) ta có:
\(f'\left( x \right) = \dfrac{1}{{{{\cos }^2}x}} - \cos x\) \( = \dfrac{{1 - {{\cos }^3}x}}{{{{\cos }^2}x}} > 0\) với \(\forall x \in \left( {0;\dfrac{\pi }{2}} \right)\) vì \(\cos x < 1\) với mọi \(x \in \left( {0;\dfrac{\pi }{2}} \right)\) nên \({\cos ^3}x < 1,\forall x \in \left( {0;\dfrac{\pi }{2}} \right)\)
Do đó hàm số \(f\left( x \right) = \tan x - \sin x\) đồng biến trên \(\left( {0;\dfrac{\pi }{2}} \right)\)
\( \Rightarrow f\left( x \right) > f\left( 0 \right) = 0\) \( \Rightarrow \tan x - \sin x > 0 \Leftrightarrow \tan x > \sin x\) với mọi \(x \in \left( {0;\dfrac{\pi }{2}} \right)\).
LG câu b
b) \(1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} < \sqrt {1 + x} < 1 + \dfrac{1}{2}x\) với \(x > 0\)
Phương pháp giải:
Xét các hàm số \(f\left( x \right) = 1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} - \sqrt {1 + x} \) và \(g\left( x \right) = \sqrt {1 + x} - 1 - \dfrac{1}{2}x\) trên \(\left( {0; + \infty } \right)\) và chứng minh chúng nghịch biến trên \(\left( {0; + \infty } \right)\).
Từ đó suy ra điều phải chứng minh.
Giải chi tiết:
Xét \(f\left( x \right) = 1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} - \sqrt {1 + x} \) trên \(\left( {0; + \infty } \right)\) ta có: \(f'\left( x \right) = \dfrac{1}{2} - \dfrac{1}{4}x - \dfrac{1}{{2\sqrt {x + 1} }}\).
Vì \(x > 0\) nên \(f'\left( x \right) < \dfrac{1}{2} - \dfrac{1}{4}.0 - \dfrac{1}{{2\sqrt {0 + 1} }} = 0\) nên hàm số \(y = f\left( x \right)\) nghịch biến trên \(\left( {0; + \infty } \right)\)
Do đó \(f\left( x \right) < f\left( 0 \right) = 0\) \( \Rightarrow 1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} - \sqrt {1 + x} < 0\) \( \Leftrightarrow 1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} < \sqrt {1 + x} \,\,\left( 1 \right)\)
Xét \(g\left( x \right) = \sqrt {1 + x} - 1 - \dfrac{1}{2}x\) trên \(\left( {0; + \infty } \right)\) ta có: \(g'\left( x \right) = \dfrac{1}{{2\sqrt {x + 1} }} - \dfrac{1}{2}\)
Vì \(x > 0\) nên \(g'\left( x \right) < \dfrac{1}{{2\sqrt {0 + 1} }} - \dfrac{1}{2} = 0\) hay \(y = g\left( x \right)\) nghịch biến trên \(\left( {0; + \infty } \right)\)
Do đó \(g\left( x \right) < g\left( 0 \right) = 0\) hay \(\sqrt {1 + x} - 1 - \dfrac{1}{2}x < 0\) \( \Leftrightarrow \sqrt {1 + x} < 1 + \dfrac{1}{2}x\,\,\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta được \(1 + \dfrac{1}{2}x - \dfrac{{{x^2}}}{8} < \sqrt {1 + x} < 1 + \dfrac{1}{2}x\) với \(x > 0\). (đpcm)
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Giáo dục công dân lớp 12
Bài 6-7. Đất nước nhiều đồi núi
Bài 38. Thực hành: So sánh về cây công nghiệp lâu năm và chăn nuôi gia súc lớn giữa vùng Tây Nguyên với Trung du và miền núi Bắc Bộ
CHƯƠNG VIII. SƠ LƯỢC VỀ THUYẾT TƯƠNG ĐỐI HẸP
CHƯƠNG VI. LƯỢNG TỬ ÁNH SÁNG