PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

Bài 18 trang 158 SBT toán 8 tập 1

Đề bài

Cho tam giác vuông cân, biết độ dài cạnh huyền là \(l\). Tính diện tích tam giác đó.

Phương pháp giải - Xem chi tiết

Áp dụng định lý Pi-ta-go vào tam giác vuông có cạnh huyền là c và hai cạnh góc vuông a, b, ta có: \(a^2+b^2=c^2\)

Công thức tính diện tích tam giác vuông có 2 cạnh góc vuông a, b là: \(S= \dfrac{1}{2}ab\)

Lời giải chi tiết

Gọi độ dài cạnh góc vuông của tam giác vuông cân là \(a\) (\(0 < a <l\) )

Theo định lý Pi-ta-go vào tam giác vuông, ta có: \({a^2} + {a^2} = {l^2}\)

\(\eqalign{  &  \Rightarrow 2{a^2} = {l^2} \Rightarrow {a^2} = {{{l^2}} \over 2}  \cr  & S = {1 \over 2}a.a = {1 \over 2}.{a^2} = {1 \over 2}.{{{l^2}} \over 2} = {1 \over 4}{l^2} \cr} \)

Vậy diện tích tam giác là \(S=\dfrac{1}{4}l^2\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved