PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 1

Bài 18 trang 159 SBT toán 9 tập 1

Đề bài

Cho đường tròn (O) có bán kính \(OA = 3cm\). Dây \(BC\) của đường tròn vuông góc với \(OA\) tại trung điểm của \(OA.\) Tính độ dài \(BC\). 

Phương pháp giải - Xem chi tiết

+) Áp dụng định lý Pytago vào tam giác \(ABC\) vuông tại \(A\): \(A{B^2} + A{C^2} = B{C^2}\)

+) Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.

Lời giải chi tiết

 

Gọi \(I\) là trung điểm của \(OA\)

Suy ra: \(IO = IA = \dfrac{1 }{ 2}OA = \dfrac{3 }{ 2}\)

Ta có: \(BC ⊥ OA\) (gt)

Suy ra:   \(\widehat {OIB} = 90^\circ \)

Áp dụng định lí Pytago vào tam giác vuông OIB ta có: \(O{B^2} = B{I^2} + I{O^2}\)

Suy ra: \(B{I^2} = O{B^2} - I{O^2}\)

\(={3^2} - {\left( {\dfrac{3 }{ 2}} \right)^2} = 9 - \dfrac{9 }{ 4} = \dfrac{{27}}{ 4}\)

\(BI =\dfrac{{3\sqrt 3 }}{ 2}\) (cm)

Xét đường tròn (O) có \(OA\bot BC\) tại I nên \(BI = CI\) (đường kính vuông góc với dây cung thì đi qua trung điểm của dây đó)

Suy ra: \(BC = 2BI=2.\dfrac{{3\sqrt 3 }}{2} = 3\sqrt 3 \) (cm)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved