Bài 18 trang 42 Chuyên đề học tập Toán 11 Chân trời sáng tạo

1. Nội dung câu hỏi

Cho tam giác ABC có góc B, góc C đều là góc nhọn. Nêu cách vẽ hình chữ nhật DEFG có đỉnh D, đỉnh E thuộc cạnh BC, đỉnh F, đỉnh G thuộc cạnh AC, AB và có EF = 2DE.

 

2. Phương pháp giải 

Dựa vào phép vị tự để làm: Cho điểm O cố định và một số thực k, \(k \ne 0\). Phép biến hình biến mỗi điểm M thành điểm M’ sao cho \(\overrightarrow {OM'}  = k\overrightarrow {OM} \) được gọi là phép vị tự tâm O tỉ số k, kí hiệu \({V_{(O,k)}}\). O được gọi là tâm vị tự, k gọi là tỉ số vị tự.

 

3. Lời giải chi tiết

 

⦁ Phân tích:

Lấy điểm G’ bất kì trên AB.

Dựng hình chữ nhật D’E’F’G’ có \(\;E'F'{\rm{ }} = {\rm{ }}2D'E'\) và hai đỉnh D’, E’ thuộc BC.

Đường thẳng BF’ cắt AC tại F.

Do D’E’F’G’ là hình chữ nhật nên \(G'D'{\rm{ }} \bot {\rm{ }}D'E'\) hay \(G'D'{\rm{ }} \bot {\rm{ }}BC.\)

Mà GD ⊥ BC (do DEFG là hình chữ nhật).

Nên G’D’ // GD.

Chứng minh tương tự, ta được E’F’ // EF.

Vì D’E’F’G’ là hình chữ nhật nên G’F’ // D’E’ hay G’F’ // BC.

Mà GF // BC (do DEFG là hình chữ nhật).

Suy ra GF // G’F’.

Áp dụng định lí Thales, ta được \(\frac{{BG}}{{BG'}} = \frac{{BF}}{{BF'}}\)

Suy ra \(BF' = \frac{{BG'}}{{BG}}.BF\)

Mà \(\overrightarrow {BF'} ,\overrightarrow {BF} \) cùng hướng.

Do đó \(\overrightarrow {BF'}  = \frac{{BG'}}{{BG}}.\overrightarrow {BF} \)

Vì vậy \({\rm{F'}} = {V_{\left( {B,\frac{{BG'}}{{BG}}} \right)}}\left( F \right)\,\,(1)\)

Chứng minh tương tự, ta được \(D' = {V_{\left( {B,\frac{{BG'}}{{BG}}} \right)}}\left( D \right)\) và \(E' = {V_{\left( {B,\frac{{BG'}}{{BG}}} \right)}}\left( E \right)\,\,(2)\)

Lại có \(G' = {V_{\left( {B,\frac{{BG'}}{{BG}}} \right)}}\left( G \right)\,\,(3)\)

Từ (1), (2), (3), ta thu được \({V_{\left( {B,\frac{{BG'}}{{BG}}} \right)}}\) biến hình chữ nhật D’E’F’G’ thành hình chữ nhật DEFG. Từ đó, ta suy ra cách dựng hình chữ nhật DEFG.

⦁ Cách dựng:

Lấy điểm G’ tùy ý trên AB.

Dựng hình chữ nhật D’E’F’G’ có E’F’ = 2D’E’, hai đỉnh D’, E’ nằm trên BC.

Đường thẳng BF’ cắt AC tại F.

Đường thẳng qua F song song với BC cắt AB tại G.

Gọi D, E lần lượt là hình chiếu của G, F lên BC.

Vậy ta đã dựng xong hình chữ nhật DEFG.

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved