Bài 1. Thu thập và phân loại dữ liệu
Bài 2. Mô tả và biểu diễn dữ liệu trên các bảng, biểu đồ
Bài 3. Phân tích và xử lí dữ liệu thu được ở dạng bảng, biểu đồ
Bài 4. Xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản
Bài 5. Xác suất thực nghiệm của một biến cố trong một số trò chơi đơn giản
Bài tập cuối chương VI
Bài 1. Định lí Thalès trong tam giác
Bài 2. Ứng dụng của định lí Thalès trong tam giác
Bài 3. Đường trung bình của tam giác
Bài 4. Tính chất đường phân giác của tam giác
Bài 5. Tam giác đồng dạng
Bài 6. Trường hợp đồng dạng thứ nhất của tam giác
Bài 7. Trường hợp đồng dạng thứ hai của tam giác
Bài 8. Trường hợp đồng dạng thứ ba của tam giác
Bài 9. Hình đồng dạng
Bài tập cuối chương VIII
1. Nội dung câu hỏi
Một tam giác có chiều cao bằng \(\frac{1}{4}\) độ dài cạnh đáy tương ứng. Nếu tăng chiều cao đó thêm 2 m và giảm độ dài cạnh đáy tương ứng 2 m thì diện tích tam giác tăng thêm 2,5 m2. Tính chiều cao và độ dài cạnh đáy tương ứng của tam giác ban đầu.
2. Phương pháp giải
Các bước giải bài toán bằng cách lập phương trình
Bước 1: Lập phương trình
- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số
- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết
- Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2: Giải phương trình
Bước 3: Kết luận
- Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn, nghiệm nào không thỏa mãn điều kiện của ẩn
- Đưa ra câu trả lời cho bài toán.
3. Lời giải chi tiết
Gọi \(x\left( m \right)\) là chiều cao của tam giác ban đầu \(\left( {x > 0} \right)\). Khi đó, độ dài cạnh đáy tương ứng là \(4x\left( m \right)\) và diện tích tam giác ban đầu là: \(\left( {x.4x} \right):2 = 2{x^2}\left( {{m^2}} \right)\). Khi tăng chiều cao đó thêm \(2m\) và giảm độ dài đáy tương ứng \(2m\) thì chiều cao mới là \(x + 2\left( m \right)\), độ dài cạnh đáy tương ứng là \(4x - 2\left( m \right)\) và diện tích tam giác lúc đó là: \(\left( {x + 2} \right)\left( {4x - 2} \right):2 = \left( {x + 2} \right)\left( {2x - 1} \right) = 2{x^2} + 3x - 2\left( {{m^2}} \right)\).
Vì diện tích tam giác tăng thêm \(2,5{m^2}\), nên ta có phương trình: \(\left( {2{x^2} + 3x - 2} \right) - 2{x^2} = 2,5\).
Giải phương trình ta tìm được \(x = 1,5\left( {tmdk} \right)\).
Vậy tam giác ban đầu có chiều cao là \(1,5m\) và độ dài đáy tương ứng là \(6m\).
Bài 8. Lập kế hoạch chi tiêu
Tải 10 đề kiểm tra 15 phút - Chương 7
Mĩ thuật
Tải 10 đề thi giữa kì 2 Sinh 8
Bài 1. Bài mở đầu
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8