1. Nội dung câu hỏi
Tính giá trị của các biểu thức sau:
a) \({3^{{{\log }_3}5}}\);
b) \({e^{\ln 3}}\);
c) \({7^{2{{\log }_7}8}}\);
d) \({2^{{{\log }_2}3 + {{\log }_2}5}}\);
e) \({4^{{{\log }_2}\frac{1}{5}}}\);
g) \(0,{001^{\log 2}}\).
2. Phương pháp giải
Sử dụng kiến thức về phép tính lôgarit để tính: Với \(a > 0,a \ne 1,M > 0,N > 0\) ta có:
a, b) \({a^{{{\log }_a}b}} = b\)
c, e, g) \({a^{{{\log }_a}b}} = b\), \({\log _a}{M^\alpha } = \alpha {\log _a}M\left( {\alpha \in \mathbb{R}} \right)\)
d) \({a^{{{\log }_a}b}} = b\), \({\log _a}\left( {MN} \right) = {\log _a}M + {\log _a}N\).
3. Lời giải chi tiết
a) \({3^{{{\log }_3}5}} = 5\);
b) \({e^{\ln 3}} = 3\);
c) \({7^{2{{\log }_7}8}} = {7^{{{\log }_7}{8^2}}} = 64\);
d) \({2^{{{\log }_2}3 + {{\log }_2}5}} = {2^{{{\log }_2}3.5}} = 15\);
e) \({4^{{{\log }_2}\frac{1}{5}}} = {2^{2{{\log }_2}\frac{1}{5}}} = {2^{{{\log }_2}{{\left( {\frac{1}{5}} \right)}^2}}} = \frac{1}{{25}}\);
g) \(0,{001^{\log 2}} = {10^{ - 3\log 2}} = {10^{\log {{\left( 2 \right)}^{ - 3}}}} = \frac{1}{8}\).
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Vật lí lớp 11
Bài 6. Tiết 3: Thực hành: Tìm hiểu sự phân hóa lãnh thổ sản xuất của Hoa Kì - Tập bản đồ Địa lí 11
Unit 5: Cities and Education in the future
Review (Units 5-8)
Unit 5: Heritage sites
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11