Bài 1. Định lí Ta-lét trong tam giác
Bài 2. Định lí đảo và hệ quả của định lí Ta-lét
Bài 3. Tính chất đường phân giác của tam giác
Bài 4. Khái niệm hai tam giác đồng dạng
Bài 5. Trường hợp đồng dạng thứ nhất (c.c.c)
Bài 6. Trường hợp đồng dạng thứ hai (c.g.c)
Bài 7. Trường hợp đồng dạng thứ ba (g.g)
Bài 8. Các trường hợp đồng dạng của tam giác vuông
Ôn tập chương III. Tam giác đồng dạng
Bài 1. Hình hộp chữ nhật
Bài 2. Hình hộp chữ nhật (tiếp)
Bài 3. Thể tích của hình hộp chữ nhật
Bài 4. Hình lăng trụ đứng
Bài 5. Diện tích xung quanh của hình lăng trụ đứng
Bài 6. Thể tích của hình lăng trụ đứng
Bài 7. Hình chóp đều và hình chóp cụt đều
Bài 8. Diện tích xung quanh của hình chóp đều
Bài 9. Thể tích của hình chóp đều
Ôn tập chương IV. Hình lăng trụ đứng. Hình chóp đều
Đề bài
Cho hình thang \(ABCD \;(AB // CD)\). Gọi \(M, N, P, Q\) theo thứ tự là trung điểm của \(AB, AC, CD, BD.\)
a) Chứng minh rằng \(MNPQ\) là hình bình hành.
b) Nếu \(ABCD\) là hình thang cân thì tứ giác \(MNPQ\) là hình gì? Vì sao?
c) Hình thang \(ABCD\) có thêm điều kiện gì thì \(MNPQ\) là hình vuông?
Phương pháp giải - Xem chi tiết
Sử dụng:
- Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.
- Tứ giác có cặp cạnh đối song song và bằng nhau thì là hình bình hành.
- Hình bình hành có hai cạnh kề bằng nhau thì là hình thoi.
Lời giải chi tiết
a) \(M, N, P, Q\) theo thứ tự là trung điểm của \(AB, AC, CD, BD\) nên \(MN\) là đường trung bình của \(\Delta ABC\); \(QP\) là đường trung bình của \(\Delta BCD\).
Suy ra:
\(\begin{array}{l}
MN//BC;MN = \dfrac{1}{2}BC\\
QP//BC;QP = \dfrac{1}{2}BC
\end{array}\)
Xét tứ giác \(MNPQ\) có \(MN // QP\) (cùng song song với \(BC\)); \(MN = QP = \dfrac{1}{2}BC\)
\(⇒ MNPQ\) là hình bình hành (theo dấu hiệu nhận biết hình bình hành).
b) \(M;Q\) lần lượt là trung điểm của \(AB;BD\) nên \(MQ\) là đường trung bình \(\Delta ABD\).
\(\Rightarrow MQ//AD;MQ = \dfrac{1}{2}AD\).
\(ABCD\) là hình thang cân thì \(AD=BC\) do đó \(MN = MQ = \dfrac{1}{2}BC = \dfrac{1}{2}AD\).
Do đó hình bình hành \(MNPQ\) có hai cạnh kề bằng nhau nên là hình thoi.
c) Gọi \(E\) là giao điểm của \(AD\) và \(BC\).
Khi \(MNPQ\) là hình vuông thì \(MQ\bot MN\) hay \(BC\bot AD\).
Suy ra \(\Delta ECD\) là tam giác vuông tại \(E\).
Lại có \(MNPQ\) là hình vuông thì \(MQ=MN\) suy ra \(AD=BC,\) do đó \(ABCD\) là hình thang cân nên \(\widehat D = \widehat C\) do đó \(\Delta ECD\) là tam giác vuông cân tại \(E\).
Vậy hình thang \(ABCD\) là hình thang cân có \(\widehat D = \widehat C = {45^o}\) thì \(MNPQ\) là hình vuông.
Bài 3. Sông ngòi và cảnh quan châu Á
Chủ đề 8. Nghề nghiệp trong xã hội hiện đại
Chương 3: Khối lượng riêng và áp suất
SGK Ngữ văn 8 - Chân trời sáng tạo tập 1
Chủ đề 8: Nhịp điệu mùa hè
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8